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Introduction 
 
 

Every one of us uses the word probable few times a day in 
common speech when referring to the possibility of a certain event 
happening. 
     We usually say an event is very probable or probable if there are 
good chances for that event to occur. 
     This simplistic dictionary definition of the probable quality 
attached to an event is unanimously accepted in current speech. 
     Far from standing for a rigorous definition, this enunciation still 
gives evidence for the quantitative and measurement aspect of the 
probability concept because the chance of an event occurring is 
represented by figures (percentages). 
     Meanwhile, these chances are the numerical result of an 
estimation or calculation process that may start from various 
hypotheses. 
 You will see in the following chapters how the proper probability 
calculus can lead to a variety of numerical results for the same 
event. These results are a function of the initial information that is 
taken into account. 

In addition, establishing a certain threshold from which the 
chance of an event occurring attribute to it the quality of being 
probable or very probable is a subjective choice. 

All these elements create a first view of the relativity of the term 
probable and of the possible errors that can be introduced into the 
qualitative and quantitative interpretation of probability. 
 These interpretation errors, as well as that false certainty 
psychologically introduced by the numerical result of measuring an 
event, turn probability calculus into a somewhat dangerous tool in 
the hands of persons having little or no elementary mathematical 
background. 

This affirmation is not at all hazardous, because probabilities are 
frequently the basis of decisions in everyday life. 
 We estimate, approximate, communicate and compare 
probabilities daily, sometimes without realizing it, especially to 
make favorable decisions. 
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 The methods through which we perform these operations could 
not be rigorous or could even be incorrect, but the need to use 
probability as criterion in making decisions generally has a 
precedence. 
 This could be explained by the fact that human beings 
automatically refer to statistics in any specific situation, and 
statistics and probability theory are related. 
 We usually take a certain action as result of a decision because 
statistically, that action led to a favorable result in a number of 
previous cases. In other words, the probability of getting a favorable 
result after that action is acceptable. 
 This decisional behavior belongs to a certain human psychology 
and the human action is generally not conditioned by additional 
knowledge. Although statistics and even probability do not provide 
any precise information on the result of a respective action, the 
decision is made intuitively, without reliance on scientific proof that 
the decision is optimum.  
 For example, when we say, “It will very probably rain today,” 
the estimation of a big chance of rain results from observing the 
clouds or the weather forecast. Most of time it rains when such 
clouds are in the sky—according to statistics—therefore, it will very 
probably rain today, too. In fact, this is an estimation of the 
probability of rain, even though it contains no figures. If we take an 
umbrella, this action is the result of a decision made on the basis of a 
previous estimation. We choose to take an umbrella not because we 
see clouds, but because most of time it rains when the sky is cloudy. 
  When we say, “It is equally probable to obtain 1 or 3 after 
rolling a die,” we have observed that the die has six sides, and so 
the number of possible outcomes is six. Among those possible 
outcomes, one corresponds to occurrence of 1 and one to occurrence 
of 3. So, the chances are equal (1/6). Unlike the first example, the 
previous estimation of chances resulted from a much more rigorous 
observation, which led to a numerical result. 
 Another example—otherwise unwanted—of making a decision 
based on probability is the following: 
 Your doctor communicates the stages of evolution of your 
disease: if you won’t have an operation, you have a 70 percent 
chance of living, and if you’ll have the operation, you have a 90 
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percent chance of a cure, but there is a 20 percent chance that you 
will die during the operation. 
 Thus, you are in a moment when you have to make a decision, 
based on personal criteria and also on communicated figures (their 
estimation was performed by the doctor according to statistics). 
 In most cases of probability-based decisions, the person involved 
performs the estimation or calculus.  
 Here is a simple example: 
 You are in a phone booth and you must urgently communicate 
important information to one of your neighbors (let us say you left 
your front door open). 
 You have only one coin, so you can make only one call. 
 You have two neighboring houses. 
 Two persons live in one of them and three persons live in the 
other. 
 Both their telephones have answering machines. 
 Which one of the two numbers will you call?  
 The risk is that nobody will be at the home you call and the coin 
will be lost when the answering machine starts. 
 You could make an aleatory choice, but you could also make the 
following decision: “Because the chances for somebody to be home 
are bigger in the case of house with three persons, I will call there.” 
 Thus, you have made a decision based on your own comparison 
of probabilities. 
 Of course, the only information taken into account was the 
number of persons living in each house. 
 If other additional information—such the daily schedules of your 
neighbors—is factored in, the probability result might be different 
and, implicitly, you might make a different decision. 
 In the previous example, the estimation can be made by anyone 
because it is a matter of simple counting and comparison. 
 But in most situations, a minimum knowledge of combinatorics 
and the calculus of probabilities are required for a correct estimation 
or comparison. 
 Millions of people take a chance in the lottery, but probably 
about 10 percent of them know what the winning probabilities really 
are. 
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 Let us take, for example, the 6 from 49 system (six numbers are 
drawn from 49 and one simple variant to play has six numbers; you 
win with a variant having a minimum of four winning numbers). 
 The probability of five numbers from your variant being drawn is 
about 1/53992, and the probability of all six numbers being drawn 
(the big hit!) is 1/13983816. 
 For someone having no idea of combinations, these figures are 
quite unbelievable because that person initially faces the small 
numbers 5, 6 and 49, and does not see how those huge numbers are 
obtained. 
 In fact, this is the psychological element that a lottery company 
depends on for its system to work. 
 If a player knew those figures in advance, would he or she still 
play? Would he or she play less often or with fewer variants? Or 
would he or she play more variants in order to better the chances? 
 Whatever the answers to these questions may be, those 
probabilities will influence the player’s decision. 
 There are situations where a probability-based decision must be 
made—if wanted—in a relatively short time; these situations do not 
allow for thorough calculus even for a person with a mathematical 
background. 
 Assume you are playing a classical poker game with a 52-card 
deck.  The cards have been dealt and you hold four suited cards 
(four cards with same symbol), but also a pair (two cards with same 
value). For example, you hold 3♣ 5♣ 8♣ Q♣ Q♦. You must now 
discard and you ask yourself which combination of cards it is better 
to keep and which to replace. 
 To achieve a valuable formation, you will probably choose from 
the following two variants: 
 – Keep the four suited cards and replace one card (so that you 
have a flush); or 
 – Keep the pair and replace three cards (so that you have “three 
of a kind or better”). 
 In this gaming situation, many players intuit that, by keeping the 
pair (which is a high pair in the current example), the chances for a 
Q (queen) to be drawn or even for all three replaced cards to have 
same value, are bigger than the chance for one single drawn card to 
be ♣ (clubs). 
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 And so, they choose the “safety” and play for “three of a kind or 
better”. Other players may choose to play the flush, owing to the 
psychological impact of those four suited cards they hold. 
 In fact, the probability of getting a flush is about 19 percent and 
the probability of getting three of a kind or better is about 11 
percent, which is about two times lower. In case you are aware of 
these figures beforehand, they may influence your decision and you 
may choose a specific gaming variant which you consider to have a 
better chance of winning. 
 This is a typical example of a decision based on probabilities in a 
relatively short time. 
 It is obvious that, even assuming you have probability calculus 
skills, it is impossible to calculate all those figures in the middle of 
the game. But you may use results memorized in anticipation 
obtained through your own calculations or picked from tables of 
guides containing collections of applied probabilities. In games of 
chance, most players make probability-based decisions as part of 
their strategy, especially regular players. 
 The examples shown thus far were not chosen randomly. They 
demonstrate the huge psychological component of our interaction 
with probabilities, especially in making decisions. 
 In addition to this practical aspect of interaction with chance and 
percentages, both laymen and scientists are fascinated by probability 
theory because it has multiple models in nature. It is a calculus tool 
for other sciences and the probability concept has major 
philosophical implications as well. 
 Returning to the immediate practical aspect, whether we have 
mathematical background or not, whether we know the precise 
definition of the concept or not, or whether we have calculus skills 
or not, many times we make decisions based on probabilities as a 
criterion, sometimes without realizing it. 
 But this criterion is not obligatory. We may use it as a function of 
intuition, as a personal principle of life, or among other subjective 
elements. 
 Those making no decisions based on figures are those who run 
the risk unconditioned by a certain threshold and, several times, the 
result is favorable for them. 
 But statistics show that probabilities are most often taken into 
account, whether in a simplistic or professional manner. 
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 All these are well-founded reasons for creating a probability 
guide addressed to average people who have no solid mathematical 
background. 
 Although the main goal of this guide is practical, we also insisted 
on providing a rigorous review of probability concepts, whose lack 
makes the beginner subject to false interpretations and application 
errors. 
 The teaching material has been thus structured for people without 
a mathematical background to be able to picture a sufficiently clear 
view on the notions used and to solve the applications through an 
accurate framing of the problem and a correct use of calculus 
algorithms, even without reading the pure mathematics chapter titled 
Probability Theory Basics. 
 Those who feel that the high level mathematics is above their 
comprehension may skip that chapter without major repercussions 
on the practical goal, namely the correct application of calculus 
methods and algorithms.  
 This is possible because the presentation uses consistent 
references to mathematical notions through examples and natural 
models. 
 Moreover, the applications exclusively belong to finite 
probability fields, where the calculus algorithms and the reduced 
number of formulas used can be retained and applied without a 
complete and profound study of probability theory notions. 
 As a matter of fact, the reader needs only an elementary 
knowledge of mathematics from primary school to calculate odds 
and probabilities—operations with integer numbers and fractions 
(addition, subtraction, multiplication and division), the order of 
operations and elementary algebraic calculus. 
 Comfort with set theory and operations with sets is helpful, but 
all these notions can be found at the beginning of the chapter titled 
Probability Theory Basics. Also, some knowledge of combinatorics 
notions and formulas is a great advantage. 
 Most of gambling applications use combinations and many times 
the probability calculus reverts to counting them. 
 But the lack of such knowledge is successfully compensated for 
because the guide contains a solid chapter dedicated to this 
mathematical domain and the information provided there can be 
understood by anyone.  
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 The structure and content of the next chapters follows: 
  
 What Is Probability? 
 Reading this chapter is essential in accommodating with the 
probability concept. 
 Starting from varying the mathematical definition, the probability 
is structurally shown as a measure and also as a limit.  
 All mathematical notions referred to, as well as the main 
probability theory theorems, are exposed through examples and 
natural models. 
 We also talk about the philosophical interpretations and 
implications of the concept and about the psychological impact of 
interaction of humans with probabilities. 
 
 Probability Theory Basics 
 This is the strictly mathematical chapter that contains all the 
rigorous definitions that establish the basis for the probability 
concept, starting from set operations, sequences of real numbers, 
convergence, Boole algebras, and measures, to field of events, 
probability, conditional probability and discrete random variables. 
 The chapter contains only the main theoretical results, which are 
presented as enunciations without demonstrations, but also contains 
many examples. 
 As we said before, reading this chapter is not obligatory to 
understanding the practical goal of calculus, but following it in 
parallels when running through the first chapter is useful for those 
having a minimal mathematical background. 
  
 Combinatorics 
 Combinatorial analysis is an important calculus tool in 
probability applications and this is the reason why it has a dedicated 
chapter. 
 This chapter contains the definitions of permutations, 
combinations and arrangements, along with their calculus formulas 
and main properties. 
 A lot of examples and solved and unsolved applications complete 
the theoretical part.  
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 Beginner’s Calculus Guide 
 This part of the work is in fact the main teaching material 
required by the beginner who wants to correctly apply probability 
calculus in practical situations. 
 The exposure of methods and applications is mostly algorithmic 
to enable the reader to easily follow the steps to be executed and to 
avoid the application errors. 
 Framing the problem, establishing the information to be taken 
into account, the correct enunciation of the events to measure, the 
adequate calculus method, the formulas to use, the calculus, all are 
explained and exemplified in depth and in an accessible manner. 
 Solved applications and suggestive examples are shown 
throughout this chapter. 
 You will also find here the most frequent errors in application or 
calculus pointed out to help beginners avoid them. 
 As in other chapters, the examples and solved applications mostly 
belong to games of chance, where the knowledge actually acquired 
has immediate application.  
 The probability calculus is explained and applied for the finite 
case (finite field of events), where the practical situations suitable 
for application are more numerous (in gambling and everyday life) 
and probability has a higher accuracy as a decisional criterion.  
 
 Probability Calculus Applications 
 This chapter verifies the theoretical and application knowledge 
acquired in the previous chapters. 
 It is in fact a collection of solved and proposed elementary 
problems that usefully and even necessarily complete the previous 
theoretical chapters. The difficulty level of the proposed problems 
grows gradually. The applications come from games of chance and 
also from everyday life. 
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WHAT IS PROBABILITY? 
 
 

 The goal of this chapter is to provide the reader who has no 
mathematical background with a sufficiently clear image of the 
probability concept, and how, in its absence, the approach of proper 
calculus becomes predisposed to errors, especially as they relate to 
the correct initial framing of problems. 
 This image should catch the basic structural aspects as well as 
properties that become manifest when we ascribe events to statistics 
and probability in daily life. 
 We will also talk about the psychological and philosophical 
implications of this concept, trying to delimit the mathematical term 
from the content of the common word probability. 
 Obviously, any explanation and presentation of the probability 
concept, even for people without a mathematical background, 
cannot overlook the mathematical definition. Thus, we will start 
with this definition and try to rebuild it step by step from its 
constituent parts. This rebuilding will be on the basis of particular 
cases and suggestive examples. 
 Such an attempt is a must because of the huge psychological 
impact of statistics and probabilities in people’s daily lives. 
 Due to a natural need that is more or less rigorously justified, 
humans consistently refer to statistics; therefore, probability has 
become a real decision-making tool. 
 In this chapter we discuss in detail this major psychological 
component of the probability concept. 
 The fact that people estimate, calculate and compare probabilities 
with the purpose of making decisions, without knowing exactly the 
concept’s definition or without mastering the proper calculus, 
automatically generates the risk of qualitative interpretation errors 
and the errors that come of using the figures as decision-making 
criterion as well. 
 Psychologically speaking, the tendency of novices to grant the 
word probability a certain importance is generally excessive in two 
ways: the word is granted too much importance—the figures come 
to represent the subjective absolute degree of trust in an event 
occurring—or too little importance—so many times, an equal sign is 
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put between probable and possible and the information provided by 
numbers is not taken into account. 
 We use here the term word instead of concept deliberately when 
talking about probability. 
 To have a good understanding of what probability means and 
implies, we do not refer to the mathematical definition exclusively, 
but also to how this notion is perceived in a nonacademic 
environment for people having low or average knowledge level. 
 This approach is necessary because probability, as both a notion 
and a tool, has huge psychological implications when interacting 
with human concerns in daily life. 
  
 
 Words and concepts 
 
 For a correct interpretation of all information we collect to study 
the various objects of knowledge, is absolutely necessary to be able 
to make the distinction, so many times hardly discernible, between 
word and concept. 
 A word is a graphic and phonetic representation of a category of 
objects that are subjects of judgments or of human communication. 
 Thus, a word identifies a group of objects from the surrounding 
reality, whether physical, perceived or abstract. 
 For example, we can assign to the word apparatus the set of 
objects (television, radio, microphone, computer, the group of 
internal human organs that work the digestion, and so on). (This is 
in fact a set of words, which, by an abuse of denotation, has been 
presented as set of physical objects, namely, the set of all such kinds 
of objects existing). The denotation apparatus represents that entire 
set. 
 As another example, we can assign to the word ball the set of 
objects {the round object used in soccer, the round mobile object in 
pool (snooker) game, a celestial body, and so on}, whose 
representative is the word itself. 
 The word is practically a symbol, a denotation that is assigned to 
the set of objects it represents. 
 Language arose and evolved during history along with the need 
for human communication, but the status of a word always remains 
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the same: a symbol indispensable to communication but deprived of 
conceptual content. 
 The word is not an object itself, but a symbolic representation of 
other objects from the surrounding reality, having the exclusive 
purpose of communication. 
 Words are used in common nonacademic language as 
communication symbols. The transmission of a certain word 
automatically refers to the entire set of objects that word represents. 
 These sets of objects are generally accepted by the community 
using a specific language, in the sense of majority. 
 This agreement is neither written nor officially stated by a certain 
organization invested in this matter, nor is it suggested by any 
academic society. While most people refer to dictionaries to gain the 
definition of a word to avoid argument about its usage, in this case, 
it is the practical result of free human communication throughout 
history. 
 A definition is a grammatical sentence delimiting or extending a 
set of objects that can be attached to a word by enunciating the 
properties specific to the objects it describes. 
 A definition can be attached to a word (or group of words) when 
the set of objects it represents is not unanimously accepted or there 
are doubts about this matter within a community or even between 
two interlocutors. 
 On the other hand, a definition can be attached to a group of 
objects in order to simplify the ulterior communications that refer to 
those objects.  

  
……………….. missing part ………………………… 

  
 
 The concept of probability  
 

Initially, probability theory was inspired by games of chance, 
especially in 17th century France, and was inaugurated by the 
Fermat–Pascal correspondence. 

However, its complete axiomatization had to wait until 
Kolmogorov’s Foundations of the Theory of Probability in 1933. 
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Over time, probability theory found several models in nature and 
became a branch of Mathematics with a growing number of 
applications. 

In Physics, probability theory became an important calculus tool 
at the same time as Thermodynamics and, later, Quantum Physics. 

It has been ascertained that determinist phenomena have a very 
small part in surrounding nature.  

The vast majority of phenomena from nature and society are 
stochastic (random). 

Their study cannot be deterministic, and that is why hazard 
science was raised as a necessity. 

There are almost no scientific fields in which probability theory 
is not applied. Also, sociology uses the calculus of probabilities as a 
principal tool. 

Moreover, some commercial domains are based on probabilities 
(insurance, bets, and casinos, among others). 
  

Probability as a limit 
 
 
 We initially present the probability concept as a limit of a 
sequence of real numbers.  Although this is a particular result (a 
theorem, namely The Law of Large Numbers) and not a definition, it 
confers to probability a structure on whose base the comprehension 
of the concept becomes clearer and more accessible to average 
people. 
 Also, the perception of probability as a limit diminishes the risk 
of error of qualitative interpretation with regard to the real behavior 
of random phenomena, given the mathematical model. 

Although in the strictly mathematical chapter the chronology of 
presentation of the notions and results is the natural one from a 
scientific point of view (definitions – axioms – theorems), here we 
deliberately reverse this order by explaining the probability concept 
in a particular case, as a limit, for a sequence of independent 
experiments that aim at the occurrence of a certain event. 
 This presentation mode is chosen with a didactic purpose because 
the notion of limit is easier to explain, visualize and assimilate at a 
nonacademic level than the complete definition of probability based 
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on Kolmogorov’s axioms.  This last one is explained for beginners’ 
understanding in the next section. 
 In addition, in mathematics, the status of definition and theorem 
may commute within the same theory, without affecting the logic of 
the deduction process. This means the deduced property of a 
mathematical object can stand for its definition itself, and vice versa. 

  
……………….. missing part ………………………… 

 
 
The relative frequency 
 

In the section titled Probability – the word, we defined the 
probability of event A occurring as being the ratio between the 
number of tests favorable for A to occur and the number of all 
equally possible tests. 

Let us come back to the classical example experiment of rolling 
the die. Let A be the event occurrence of number 5. 

According to the classical definition, the probability of A is 

6
1)( =AP  (one favorable case; namely, the die shows the side with 

the number 5 from six equally possible cases). By establishing the 
probability P(A), we have attached a unique number to event A (1/6 
in this case). 

The ratio from the definition of probability is positive and less 
than 1, so probability is a function P defined on the set of events 
generated by an experiment, with values in interval [0, 1]. This 
function attaches a positive and less than 1 number to each event 
and this number is called an event’s probability. The properties of 
this function, as well as its extension to sets of more complex 
events, is exposed in the section titled Probability as a measure. 

The simple assignment of a number to a singular event through 
function P does not provide additional information about the 
occurrence of respective event. The fact that we know the 
probability of occurrence of number 5 at die rolling as being 1/6 
does not confer any relevance to the prediction that this event will 
happen or not at a given moment as result of a singular test. 
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But there exists a mathematical result, called the Law of Large 
Numbers, which gives us additional information about the 
occurrence of an event within a sequence of experiments. 

This information is about the frequency of occurrence of the 
event within the sequence of tests and is a property of limit making 
the connection between relative frequency and probability. 

Let us see what relative frequency means. 
Staying with the example experiment of rolling the die and taking 

the same event A (occurrence of number 5), let us assume we have a 
sequence of independent experiments (tests) ...,...,,,, 321 nEEEE  , 
each generating a certain outcome. 

We can choose this sequence as being the chronological sequence 
of tests of rolling the die, performed by same person over time, or 
the chronological sequence of such tests performed by whatever 
number of established persons. We can also choose the sequence as 
being the chronological sequence of such tests performed by all the 
people on Earth who make up this experiment. 

No matter the set of chosen tests, as long as they are well defined 
and form a sequence (an infinite enumeration can be attached to 
them). Obviously, any of these choices is hypothetical. 

Within this sequence of independent tests ( ) 1≥nnE , we define the 
relative frequency of occurrence (producing) of event A. 

Let us assume the die rolls a 2 on the first test ( 1E ). At this 
moment (after one test), the number of occurrences of 5 is 0. 

Denote: 1E  – 1 – 0 
On the second test ( 2E ), the die rolls a 1. At this moment (after 

two tests), the number of occurrences of 5 is still 0. 
Denote: 2E  – 2 – 0 
On the third test ( 3E ), the die rolls a 4. At this moment (after 

three tests), the number of occurrences of 5 is still 0. 
Denote: 3E  – 3 – 0 
On the fourth test ( 4E ), the die rolls a 5. At this moment (after 

four tests), the number of occurrences of 5 is 1. 
Denote: 4E  – 4 – 1 
On the fifth test ( 5E ), the die rolls a 2. At this moment (after five 

tests), the number of occurrences of 5 is still 1. 
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Denote: 5E  – 5 – 1 
And so on, assume we obtain the following results: 

      1E  – 1 – 0 
      2E  – 2 – 0 
      3E  – 3 – 0 
      4E  – 4 – 1 
      5E  – 5 – 1 
      6E  – 6 – 1 
      7E  – 7 – 1 
      8E  – 8 – 1 
      9E  – 9 – 2 
      10E  – 10 – 2 
      ………….. 
      nE  – n – na  
      ………….. 

  
In the previous diagram, the first column contains the successive 

tests, the second column contains the order numbers within the 
sequence and the third column contains the cumulative numbers of 
occurrences of 5. The successive results from the third column (the 
total number of occurrences of 5 after each test) form a sequence 
( ) 1≥nna  (observe in the diagram that they are values of a function 
defined on N; namely, an infinite enumeration). Thus, we have 
obtained the sequence 0, 0, 0, 1, 1, 1, 1, 1, 2, 2,…, na , … of 
cumulative numbers of occurrences of event A as the result of the 
performed tests. 

Probability theory does not provide us with any property of this 
sequence ( ) 1≥nna , so we have no information about certain of its 
terms, nor about its behavior to infinity. What we can only observe 
is the sequence being monotonic increasing (see the section titled 
Sequences of real numbers. Limit in the mathematical chapter). In 
exchange, the theory provides information about another sequence, 

namely the sequence 
1≥









n

n

n
a

. 
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By making the ratio nan /  for each test, we can complete the 
previous diagram with a new column containing the numerical 
values of these ratios: 

      1E  – 1 – 0 – 0 
      2E  – 2 – 0 – 0 
      3E  – 3 – 0 – 0 
      4E  – 4 – 1 – 1/4 
      5E  – 5 – 1 – 1/5 
      6E  – 6 – 1 – 1/6 
      7E  – 7 – 1 – 1/7 
      8E  – 8 – 1 – 1/8 
      9E  – 9 – 2 – 2/9 
      10E  – 10 – 2 – 2/10 (= 1/5) 
      ……………………. 
      nE  – n – na  – nan /  
      ……………………. 

 
Obviously, the results from the last column form a sequence, as 

being values of a function defined on N (0, 0, 0, 1/4, 1/5, 1/6, 1/7, 
1/8, 2/9, 2/10,…, nan / , …). 

The general term of this sequence is 
n
an  and is called the relative 

frequency of occurrence of event A. 
 

……………….. missing part ………………………… 
 
Probability as a measure 
 
 

In the previous section we presented probability as a number 
associated with an event generated by an experiment with a finite 
number of outcomes. 

The probability was defined particularly, on a finite set of events, 
in which the elementary events are equally possible. 
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The notions of elementary event, field of events and equally 
possible events were not defined rigorously, but only through 
examples. 

In this context, the probability of an event is defined as the ratio 
between the number of cases that are favorable for the event to 
occur and the total number of equally possible cases. 

By following this definition, we can easily calculate the 
probabilities of events generated by experiments like rolling the die, 
spinning the roulette wheel, picking a card from a given deck, 
drawing an object from an urn whose content is known, etc. 

We can apply the classical definition in these cases because each 
of the experiments enumerated generates a finite number of events 
and the elementary events are equally possible. 

The classical definition of probability does not refer to the set of 
events associated with an experiment, which may be more or less 
complex, but only to its number of elements. 

Once this set is organized (structured) as a field with certain 
axioms (properties), the probability can be defined as a function 
whose properties are generated by the structure of the respective 
field and can be studied in greater depth. 

In mathematics, a structure is assumed to organize a set of objects 
(which could be numbers, points, sets, functions, and the like) by 
introducing a group of axioms enunciating properties of the 
elements with respect to certain relations of operations (composition 
laws) that are well defined for that set. 

By granting a set a well-defined structure, the set acquires the 
denomination of field, space, corpus, algebra, and so on. 

In theory, organizing sets as structures is generally done to study 
the properties of certain functions that are defined on those sets. 

Here are few examples of structures: 
 

……………….. missing part ………………………… 
 
In the algebra P (Ω ), we have Ω=V  and  Λ φ= . 
We also have a definition of minimal elements with respect to the 

relation order ⊂  (the equivalent of the implication relation ⇒  from 
logics), called atoms: 
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An element A of a Boole algebra A, VA ≠  is called atom of that 
algebra, if the inclusion AB ⊂  implies B = Λ or AB = , for any 
∈B A. 
In the algebra P (Ω ), each part of Ω  having one single element is 

an atom of this algebra. 
The set Σ  of the events associated with an experiment, along 

with previously defined operations between events, form a Boole 
algebra. This result can be immediately deduced if it is taken into 
account that the events can be represented as sets and Σ  is included 
in P (Ω ), but it also can be stated as an axiom if, from a 
rigorousness excess, we do not identify the event with the set of tests 
that generate it. 

Between the specific notions of a Boole algebra and those of the 
set of events associated with an experiment, we can observe the 
following correspondence: 

 
Boole algebra The set of events (Σ ) 
operation ∪  operation or 
operation ∩  operation and 
operation C  operation non 

null element Λ impossible event (φ ) 
total element V sure event (Ω ) 

atom elementary event 
 
The Boole algebra of the events associated with an experiment is 

called the field of events of the respective experiment. 
A field of events is then a set of results Ω , structured with an 

algebra of events Σ  and is denoted by{ }ΣΩ, . 
Thus, we have attached an algebraic structure to each experiment; 

namely, the Boole algebra of the set of events Σ . This action creates 
the basis of the mathematical model on which the real phenomenon 
can be studied, making possible the step from the practical 
experiment to probability theory. 

Granting the set Σ  with an algebraic structure has the goal of 
conferring consistency to the ulterior definition of probability as a 
function on Σ  and as well of providing us the tools needed to 
deduce the properties of this function. These properties stand for the 
basic formulas of applied probability calculus. 



 
23

The first step in extending the classical definition of probability is 
defining it as a function of a finite field of events. 
 A field of events { }ΣΩ,  is finite if the total set Ω is finite. 
 The next definition calls probability a function on a finite field of 
events, which has three certain properties. 
 Let { }ΣΩ,  be a finite field of events. 

 
Definition:  Call probability on Σ , a function P: Σ →R meeting 

the following conditions: 
(1)  P(A)≥0, for any A∈ Σ ; 
(2)  P(Ω ) = 1; 
(3)  P(A1 ∪A 2 ) = P(A 1 ) + P(A 2 ), for any A 1 , A 2 Σ∈  with 

A 1 ∩A 2 =φ . 
 

From this definition, it follows that: 
1)  A probability takes only positive values; 
2)  The probability of the sure event is 1; 
3)  The probability of a compound event consisting of two 

incompatible events is the sum of the probabilities of those two 
events. 

Probability is defined then as a function P on the field of events 
associated with an experiment, which meets the three conditions 
(axioms) described above. 

The fact that { }ΣΩ,  is a field of events (that reverts to the fact 
that Σ  is structured as a Boole algebra) ensures: 

– The membership Σ∈Ω (therefore the expression P(Ω ) from 
condition (2) does make sense); 

– The commutativity of the operation of union (or) between 
events and the membership Σ∈∩ 21 AA  (therefore the expression 
P(A 1 ∪A 2 ) from condition (3) does make sense). 

This information ensures the total consistency of the definition. 
Property (3) can be generalized by recurrence for any finite 

number of mutually exclusive events. Therefore, if  A i ∩A j  =φ , 
i≠ j,  i, j = 1, … , n, then: 
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 P(A 1 ∪∪ 2A  … nA∪ ) = ( ) ( ) ( )nAPAPAP +++ ...21  or, else 

written, =








=
∪

n

i
iAP

1
∑
=

n

i
iAP

1
)( . 

 The axioms of a Boole algebra (commutativity and associativity) 
are also involved here, allowing the above denotations by defining 
in a solid way to operate a finite union within an algebra of events. 

This is the definition of probability in a finite field of events. Let 
us name it Definition 1. It does not identify a unique function, called 
probability, but it attaches this name to a function defined in the 
field of events, which has the three specific properties. 

It is then possible for several probabilities (as functions) to exist 
in the same field of events, all having the same properties presented 
in the mathematical chapter. 

Definition 1 does make sense as long as the set of events Σ  has a 
Boolean structure (it is a field of events). Therefore, we cannot talk 
about the probability of an isolated, singular, predefined event. We 
can do that only in the context of its membership in a field of events. 

Thus, probability makes sense only as a function of a well-
defined set that is structured as a field of events. 

A finite field of events { }ΣΩ, , along with a probability P, is 
called a finite probability field and is denoted by { }P,, ΣΩ . 

 
……………….. missing part ………………………… 

 
As a whole, the following ideas must be kept in mind: 
 
●  Probability is nothing more than a measure; as length measures 

distance and area measures surface, probability measures aleatory 
events. As a measure, probability is in fact a function with certain 
properties, defined on the field of events generated by an 
experiment.  

●  A probability is characterized not only by the specific function 
P, but by the entire aggregate the set of possible outcomes of the 
experiment – the field of generated events – function P, called 
probability field; probability makes no sense and cannot be 
calculated unless we initially rigorously define the probability field 
in which we operate.  



 
25

●  Probability is not a punctual numerical value; textually given 
an event, we cannot calculate its probability without including it in a 
more complex field of events. Probability as a number is in fact a 
limit, respectively the limit of the sequence of relative frequencies of 
occurrences of the event to measure, within a sequence of 
independent experiments. 

 
The understanding of probability is complete when it hints not 

only at the concept’s definition, but also at the relationship between 
the mathematical model and the real world of random processes. 
 In this direction, the next sections of this chapter are useful for 
completing the general image created thus far by defining 
probability. 

 
Relativity of probability 

 
 

When we speak about the relativity of probability, we refer to the 
real objective way in which probability theory models the hazard 
and in which the human degree of belief in the occurrence of various 
events is sufficiently theoretically justified to make decisions.  

Thus, any criticism of the application of probability results in 
daily life will not hint at the mathematical theory itself, but at the 
transfer of theoretical information from the model to the surrounding 
reality.  

Probability theory was born from humans’ natural tendency to 
predict happenings and the unknown. The starting point was the 
basic experimental observation of the behavior of relative 
frequencies of occurrence of events within the same type of 
experiment: according to long-time experience, the relative 
frequency of occurrence of a certain event oscillates around a certain 
value, approximating it with high enough accuracy after a very large 
number of tests. Aiming to demonstrate this result, probability 
theory was created step by step and integrated with measure theory, 
and the experimentally observed property of relative frequency was 
theoretically proved and called the Law of Large Numbers.  
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The hazard 
 
Apparently paradoxically, as probability theory developed, the 

terms hazard and randomness disappeared from its language, even 
though they represented the reality object that initially stimulated its 
creation. 

The mathematical model created for probability, which started 
from hazard and randomness, is exclusively dedicated to defining 
the measure–function that reproduces the probability behavior of 
events within a structure, as well as to the deduction of the 
properties of this function and its statistical applications. 

Randomness, as the object of objective reality, is not defined or 
introduced in the mathematical context of theory. At most, the 
introductions to the various papers in this domain only make 
reference to it. 

Although the philosophy of hazard has always stood for an 
attractive field, we note that no one from among the great 
philosophers has studied the hazard as a philosophical object. 

In Kantian language, the hazard does not stand for the thinker as 
a logical category, nor as an a priori form, nor even as a precise 
experimental category, remaining at its simple status of a word that 
covers unclassified circumstantial situations of the various theories.  

Besides philosophy, mathematics did not succeed in providing a 
rigorous definition; moreover, it did not create a solid model for 
randomness and hazard. 

Emile Borel stated that, unlike other objects from the surrounding 
reality for which the creation of models assumes an idealization that 
preserves their properties, this idealization is not possible in the case 
of hazard. In particular, whatever the definition of a sequence 
formed by the symbols 0 and 1 is, this sequence will never have all 
the properties of a sequence created at random, except if it is 
experimentally obtained (for example, by tossing a coin in 
succession and putting down 0 if the coin shows heads and 1 if the 
coin shows tails). Borel also proposes an inductive demonstration 
scheme for this affirmation regarding the random sequence. 

Assume someone is building such an indefinite sequence 
0010111001…, which has all properties of the sequences generated 
by experimental randomness. Assume the first n terms of the 
sequence were built and follows to write the n + 1 term. There are 
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two options: the first n results are somehow taken into account or 
they are not. The first option annuls the random character of the 
construction, because a precise rule for choosing that term exists. 
The second option brings us to the same situation we would stand in 
at the beginning of the sequence’s construction: How do we choose 
one of the symbols 0 or 1 without taking into account any difference 
between these? This choice would be equivalent to a draw, which 
assumes an experimental intervention. Using the reduction to the 
absurd method, we come to the conclusion that such a random 
sequence cannot be built. 

Far from entirely convincing us, this proof underlines the 
theoretical difficulties of conception with regard to this subject. 

Borel asserts that we cannot state a constructive definition of a 
random sequence, but we can attach to these words an axiomatic–
descriptive definition. However, he also admits that such a definition 
would have no mathematical effectiveness with respect to its 
integration into probability theory. 

In the attempt to mathematize randomness, Richard von Mises 
has tried to enunciate an axiomatic definition by introducing the 
notion of collective. He defines a sequence of elements 

1 2, , ..., , ...na a a  as a random sequence (and calls it collective) if, 
given a property f of its elements and denoting by n(f) the number of 
elements from the first n having the property f, the following two 
axioms are met: 

 
……………….. missing part ………………………… 

 
These degrees of belief are, in fact, the expression of the relative 

frequency: in a long succession of rolls, the number 3 will occur 
one-sixth of the time.  

This gambling behavior is amenable, with the reservation of 
relativity of application of mathematical model, to a regular play 
that generates a long succession of experiments, but it has nothing to 
do with a theoretical motivation in the case of an isolated bet.  

And yet, most gamblers have this expectation and decision-
making behavior, which is nothing more than a subjective 
translation of the conclusions of the Law of Large Numbers. 

This example can be generalized for any type of bet for which a 
decision is based on relative frequencies, as well for any situation in 
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which the subjective degree of belief is superimposed on 
mathematical probability: the theoretical result is transposed in a 
finite context (although infinity cannot be obtained at a practical 
experience level), conferring to the application a relative character. 

Transferring the limit–probability concept in a practical situation 
and transforming it into a degree of belief represents at least an act 
of relative judgment. 

Similarly, the same relativity supervenes in a case in which we 
consider probability as a measure and we apply its properties in 
practical cases of finite experiences.  

The mathematical concept of measure–probability has been 
defined in an infinite collective, and at a practical level, infinity 
cannot be reproduced experimentally.  

Even excluding the applicability of probability, the measure 
notion itself has a relative quantitative character that results from the 
comparative measurement (existence of a standard); the result of a 
measurement does not represent an absolute numerical value, but a 
multiple or division of the standard of measure used. 

As the length of a segment measured in meters represents the 
number (integer or fraction) of inclusions of meter in each 
respective segment, the probability of an event represents the 
fraction corresponding to that event, as part of a sure event (with the 
measure 1). That the probability of occurrence of the number 3 on a 
die roll is 1/6 is translated into comparative measurement terms as 
event occurrence of 3 weights 1/6 from the sure event.  

Still, in the classical definition of probability (the ratio between 
the number of favorable cases for the event to occur and the number 
of all equally possible cases) a relativity is involved, even from the 
construction of the definition. This definition applies only to fields 
of events in which the elementary events are equally possible. 

This attribute of equally possible can be textually defined as 
probable is the same size or possible in the same measure, which are 
terms that revert by their content to the term probability and make 
this notion defined through itself. 

In addition, applying this definition in practical situations 
assumes the idealization of the elementary events are equally 
possible, which confers to probability another relativity, resulting 
from the nontotal equivalence of the mathematical model with the 
real phenomenon. 
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The approximation all the die’s numbers have the same 
probability of occurrence, which is indispensable in probability 
calculus applied to more complex events related to this experiment, 
is questionable at a practical level and raises the question whether 
ignoring all physical factors equally is justified.  

Assuming a die is a perfect cube, the mode of rolling can alter the 
aleatory attribute of the experiment.  

For example, repeated throws at a certain angle might favor the 
occurrence of a certain die’s sides, as would the height from which 
the die is thrown, the initial impulse or the way it is held.  

The unconditioned ignoring of all these physical factors comes 
from a certain symmetry of objects and physical actions and 
assumes an approximation that confers to the practical probability 
calculus another relativity. 

Obviously, viewing the experimental results from the perspective 
of relative frequency in long successions of experiments (in the case 
of rolling a die, this operation might be performed over time by 
several persons, at various angles and from various heights), the 
relativity previously mentioned dissipates and the Law of Large 
Numbers finally takes effect, even if delayed.  
 But the equally possible act of approximation still remains a 
necessary idealization and probability theory could not be built 
without it. 
 Still related to applicability, a major relativity of probability 
exists that may significantly change the results of practical calculus. 
It is about choosing the probability field in which the application 
runs. 

As a mathematical object, the probability field is a triple 
{ }P,, ΣΩ , where Ω  is the set of possible results attached to an 
experiment, Σ  is a field of events on Ω , and P is a probability on 
Σ . If any of these three components is changed, the result is a new 
mathematical object, respectively, a new probability field.  

This means we can obtain different probabilities for the same 
event, even if it is included in different fields of events. 

We take again a simple example presented earlier in this chapter 
as an application of the classical definition of probability.  

A 52-card deck is shuffled and the first card from the upper side 
is face up. Let us calculate the probability for the card shown to be 
clubs (♣). The experiment has 52 possible outcomes (results), from 
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which thirteen are favorable for the event the first card is clubs to 
happen. The probability of this event is then 13/52. 

Let us now change the conditions of the experiment by assuming 
that we accidentally saw the last card after the deck was shuffled, 
and this was 5♦. The event the first card is clubs now has the 
probability 13/51 because the number of favorable cases is still 
thirteen, but the number of all possible results is 51 because the last 
card (5♦) cannot be the first. 

Therefore, for the same event E that was textually described as 
the first card is clubs, we found two different probabilities.  

This double calculation is far from being a paradox, but it has a 
very simple mathematical explanation: 

 
……………….. missing part ………………………… 

 
The Philosophy of Probability 
 
 

What is the sense of the question: “What is the probability of 
…”? This seems to be the essential question around which all 
problems of philosophy revolve. 

Great mathematicians like Pascal, Bernoulli, Laplace, Cornot, 
von Mises, Poincaré, Reichenbach, Popper, de Finetti, Carnap and 
Onicescu performed philosophical studies of the probability concept 
and dedicated to them an important part of their research, but the 
major questions still remain open to study:  

●  Can probability also be defined in other terms besides through 
itself?  

●  Can we verify that it exists, at least in principle? What sense 
must be assigned to this existence? Does it express anything besides 
a lack of knowledge? 

●  Can a probability be assigned to an aleatory isolated event or 
just to some collective structures? 

These are just few of the basic questions that philosophy dealt 
with, through the efforts of the thinkers listed earlier, but still 
without a scientifically satisfactory conclusion.  

Hundreds of pages of papers might be written on each of such 
kind of questions. We do not pretend in this section that we review 
all the problems of philosophy of probability, nor do we claim that 
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the text was optimally organized from a didactic point of view. This 
presentation aims only to stimulate the research and deep knowledge 
tendencies of readers with regard to this subject, to complete an 
image of the probability concept that includes its philosophical 
aspects and to extend the simple image of a mathematical tool of 
calculus of degree of belief, which is so common among average 
people. 
 

……………….. missing part ………………………… 
 
 What does verisimilar actually mean in reality? From the history 
of analysis of this concept, and further from antiquity we have the 
famous example of Carneade: 
 A boy goes into a dark cellar. He sees there a rope that looks like 
a coiled snake. The boy gets scared, not knowing whether the rope is 
a snake or not. He waits a little and observes that the object does not 
move. Maybe it is not a snake. He carefully advances a few steps 
and the object still remains motionless. His belief that it is a lifeless 
object increases. He takes a stick and touches it. The object does not 
move. Only when he takes it in his hand does he reach the practical 
certitude. 
 This example contains in itself the subjective probability 
promoted by probability scientists such as de Finetti. The example 
shows very intuitively the evolution from uncertainty to practical 
certainty via Bayes’s theorem. 
 Carneade’s rivals raised the following question to him: 
 Verisimilitude is something resembling the truth. If you do not 
know what the truth is, how can you know that something looks like 
it? 
 These polemical requests made Carneade develop a nuanced 
analysis of the concept of verisimilitude. He considered that the 
degree of belief attached to things is given by: 
 – Vivacity of sensations 
 – Order of representations 
 – Absence of internal contradictions. 
 In the rope example, at the beginning the vivacity of sensations 
was not enough (it was dark there), then the boy appealed to the 
order of representations by verifying whether the rope was moving, 
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and the certitude came as result of finding no internal contradictions 
between rope’s representation and the object in front of him.  
 If a mouse under the rope had made it move, the boy’s level of 
belief in the hypothesis it is a rope would have diminished owing to 
the internal contradictions between representations: a rope does not 
move by itself. 
 Carneade also says: “We, humans, cannot reach the absolute truth 
through reason, nor perception, as skeptics proved. The truth, the 
certitude are not given to us. Still, life requires us to act. Therefore, 
we have to be content with the practical appearance of truth—the 
verisimilitude.” 
 

……………….. missing part ………………………… 
 
The Psychology of Probability 
 
 

From the previous sections dedicated to relativity and philosophy 
of probability, we realize that this concept has a major psychological 
component generated by its impact with the human mind at the 
cognitive level. 

The probability notion itself, through its interpretation as a degree 
of belief, as well as the application of probability theory in daily life, 
are the subject of objective or subjective human appreciations and 
judgments, no matter the human’s level of knowledge. 

The human mind is built so that it manifests through two 
apparently contradictory tendencies: on the one hand, it is eager for 
knowledge and disposed to the mental effort of searching for 
answers to questions about phenomena from the surrounding world. 

On the other hand, it accepts the comfort of immediate 
explanations and theories that do not contradict other convictions, at 
least at first. 

In this sense, the interpretation of probability as an absolute or at 
least a sufficient degree of belief (to make decisions) has a partially 
solid motivation: thus far, probability theory is the only valid theory 
operating upon aleatory events (even if in idealized context) through 
incontestable mathematical methods.  
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This motivation is in fact the expression of the comfort we just 
talked about: humans search around them for explanations, causes 
and theories to answer to their questions conveniently and chooses 
the most rigorous (but not always).  

They limit their mental effort to this plane search (on the 
horizontal), by omitting (intentionally or not) that another dimension 
of cognition (on the vertical) exists where profound study is done 
through abstraction and generalization.  

Obviously, this last type of cognition process assumes judgments 
that are not at everybody’s hand, a certain level of education, 
intelligence and conceptual perception being required. 
 Another factor that influences the thinking process is the 
subconscious, this copilot of the human mind that much of the time, 
without our being aware, takes control over the functions of the 
organism, including the cognitive ones. 

The two distinct notions—philosophical probability and 
mathematical probability—even when individually perceived, are 
frequently confused by a person in situations involving theoretical 
judgment or applications.  

Besides this major conceptual inconsistency, qualitative 
interpretation errors may be multiple: 

●  The exclusive use of the term probability in the sense of its 
classical definition; 

Not every field of events can be reduced to a finite field with 
equally possible elementary events, for the classical definition to 
apply.  

●  Attaching a probability to an isolated event; 
The field of events as a domain of the probability function must 

be structured as a Boole algebra. The probability of an event does 
not make sense if that event does not belong to such a field. 

●  Isolation of probability as a function from the probability field; 
Probability is determined by the triple (the set of possible 

outcomes–the field of events–the probability function); namely, the 
probability field. Defining the probability of an event means putting 
in evidence each of the three components, not just the function. 

●  Identification of probability with the relative frequency; 
Although probability is the limit of relative frequency and 

prediction can be made only for a long-running succession of 
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experiments, the result is frequently applied by analogy to an 
arbitrary succession of experiments and even to an isolated event.  

● Transformation of mathematical probability into an absolute 
degree of belief; 

Neglecting the relative aspects of probability turns it into an 
absolute criterion in making decisions in various situations that 
require an action. 

These interpretation errors are related to the intellectual capacity 
as well as to the intimate psychological mechanisms of the subject, 
including the functions of the subconscious.  

Among them, the most important interpretation error from a 
psychological point of view is the transformation of probability into 
an absolute degree of belief, which also has social implications, 
because it results immediately in the acceptance of probability as a 
unique decision-making criterion with effects in the sphere of 
personal actions that also affect other people around the subject.  

Including this psychical behavior in the category of qualitative 
interpretation error finds its complete motivation in the section titled 
Relativity of probability, where we saw that the probability notion 
has a multirelative character, with respect to both the concept itself 
and to its equivalence relation with the phenomenal world it models. 

Making an optimal recommendation about this line of decision-
making conduct is a complex problem, which itself represents 
another individual theory. 

It is easy to make a recommendation at an immediate 
classification level: changing the attribute of absolute into relative. 

The subject must mentally perceive the (mathematical) 
probability as a rigorously calculated degree of belief, but relative 
with respect to the possibility of the physical occurrence of an event. 

This attribute assumes in succession the acceptance of probability 
as a decisional criterion, but not exclusively. The decision come 
from a complex of criteria, perhaps weighted, some of which may be 
even subjective. 

Mathematics is still firmly involved in sustaining such 
recommendation and also in an eventual theory of subjective 
probability. 

De Finetti declared himself with no doubt as sustaining a 
subjectivist concept of probability: “My point of view may be 
considered as the extreme of subjectivistic solutions. The purpose is 
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to show how the logical laws of probability theory can be rigorously 
established from a subjective point of view; among other things, it 
will be shown how, although I refuse to admit the existence of any 
objective value and signification of probabilities, we can make an 
idea about the subjective reasons due to which, in a big part of 
different problems, the subjective judgments of normal people are 
not only not much different, but they rigorously coincide with each 
other.”  

He obsessively repeats in his papers that “Probability does not 
exist,” being completed by Barlow with “...except in our mind.” 

De Finetti proposes an extremely simple definition for 
probability: “Assume a person is constrained to evaluate the ratio p 
at which he or she would be disposed to change an amount S, which 
may be positive or negative, depending on the occurrence of an 
event E, with the sure possession of amount pS. Then, p is said to be 
the probability of E given by the respective person.” 

This manner of defining probability is, obviously, disputable. 
First, the definition makes no sense if referring to an empirical 

subject, for the simple reason that ratio p does not actually depend 
only on event E, but also on the amount S, as psychological research 
has revealed: if a normal person feels indifferent about the 
alternative $1 for sure against $6 if a 6 occurs at a die roll, an 
alternative of the type $10000 for sure against $60000 if a 6 occurs 
at a die roll would not be felt so indifferently by the same person, 
who would prefer the first variant.  

But just the hypothesis p = p(E) and not p = p(E, S) is essential 
for de Finetti’s axiomatization (p is a function of E and not also of 
S). 

This can be also observed in a demonstration of the additivity of 
p, which is rigorous only if p does not depend on S. 

At this objection, the author answers: “It would have been better 
if I would deal with utilities, but I was aware of the difficulties of 
bets and I preferred to avoid them by considering small enough 
stakes. Another lack of my definition—or, better stated, of the tool I 
choose to make it operational—is the possibility for those accepting 
the bet against the respective person to have better information. This 
would lead us in game theory situations. Of course, any tool is 
imperfect and we have to be content with an idealization ... 
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Probability theory is not an attempt to describe the real behavior 
of people, but refers to coherent behavior and the fact that people are 
more or less coherent is not essential.” 

But let us admit that we can skip the drawback of initial 
definition by postulating that this is the way an ideal person would 
act (the ratio p to only depend on E), a person who is not interested 
in winning, but uses the bet only to clarify his or her own initial 
subjective probabilities that persist in the subconscious. 

Once this deadlock is passed, de Finetti develops an elegant and 
coherent theory about which he says that it succeeded in formalizing 
the probability concept that is the closest to the one used by 
common people, the one used by people in their practical judgments. 

The found rules “are in fact only the precise expression of the 
rules of logics of probable, which are unconsciously, qualitatively, 
even numerically applied by all people, in any life situation.” 

As a conjecture of conclusions on his theory, de Finetti puts the 
following question: “Among the infinity of possible estimations, is 
there one we could consider as objectively coherent, in an undefined 
sense for the moment? Or, can we say at least about an evaluation 
that is better than another? ... For assigning an objective sense to 
probability notion, during the centuries two schemes were imagined: 
the scheme of equally possible cases and the frequency 
considerations. But none of these procedures obliges us to admit the 
existence of an objective probability. On the contrary, if someone 
wants to force their significance for reaching such conclusion, will 
face the well-known difficulties, which are vanishing themselves if 
we become less pretentious, that is if we will try not to eliminate, 
but to define the subjective element existing between them ... The 
problem consists in considering the coincidence of opinions as a 
psychological fact; the reasons of that fact can retain their subjective 
character, which cannot be left aside without raising a lot of 
problems whose sense is not even clear.” 

Regarding the decisional criteria based on a degree of belief, it 
has been ascertained that a human resorts psychologically to 
practical statistics in large measure. 

As in the case of using mathematical probability as an absolute 
decision-making criterion, consulting the statistical results often 
becomes the unique criterion for making a decision in certain 
situations. 
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For example, a person may decide to undergo a certain operation 
if the medical statistics reveal a satisfactory success rate (let us say, 
80 percent) for this type of operation. 

Such a decision is based exclusively on the results of previous 
practical statistics, which the undecided person deems trustworthy. 

Many times decisions are also made on the basis of previous 
unrecorded statistics whose results are established through personal 
observations and intuition. 

For example, when we observe black clouds in the sky, we hurry 
to get home. The statistics used here as the basis of a decision are 
the set of personal observations performed during a lifetime of the 
same phenomenon: in most situations (p% from them, p enough 
big), it rained when such clouds were in the sky. Then, it is very 
possible (p% degree of belief) that it will rain again now, so we 
quicken our steps to get home sooner. 

Such decisions are not, in practice, the immediate result of 
consulting the statistics, but are a process that transforms the 
statistical result into a degree of belief, which is still an expression 
of a probability. 

Probability has a direct theoretical connection with statistics 
(mathematical statistics is an extension of probability theory and is 
even considered a part of it), but is also connected to practical 
statistics. 

Practical statistics means a collection of outcomes (results) of a 
certain type of experiment, recorded over time. 

These results correspond to a finite time period (that explains the 
use of the term statistics until this moment), and therefore to a finite 
number of experiments. 

Generally, solid practical statistics cover a very large time period 
and, by implication, a very large number of experiments. 

The statistical results are recorded in diagrams or bidimensional 
tables, in which time (experiment’s number) is one of coordinates. 

Such representation shows the relative frequency of the event or 
events that are the subject of statistics, even though this frequency is 
not directly calculated (as a ratio), with the condition that the 
experiments are performed in identical conditions. 

From here, the connection with probability is immediate. Being a 
relative frequency, the more results the statistical record contains, 
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the better this frequency approximates the probability of a respective 
event. 

Thus, the degree of belief of the person making the decision 
based on statistics becomes a translation of a partial result (the 
relative frequency recorded by statistics until that moment) of an 
isolated event (respective decision-making situation). 

The subject, in fact enlarges the succession of statistically 
recorded experiments with another one, the one he or she is involved 
in that has not yet happened, by applying the relative frequency 
corresponding to the previous n experiments to the n + 1 
experiments including the virtual n + 1 experiment. 

This in inductive reasoning resembling prediction based on 
frequential probability. 

In the previous medical example, the patient makes the following 
judgment: If the operation succeeded in 80 percent of previous 
cases, it will also succeed in my case with 80 percent certainty, so I 
will have the operation and assume the 20 percent risk. 

In reality, this risk might be lower or higher because of other 
criteria not taken into account. The 80 percent certainty does not 
come from objective factors specific to the isolated medical case of 
that patient, but from practical statistics, which correspond to other 
persons. 

 
……………….. missing part ………………………… 

 
Here is a simple example of false intuition, in which the error 

comes from an incorrect framing of the problem: 
 
You have the following information: A person has two children, 

at least one a boy. What is the probability of the other child being a 
boy, too?  

You are tempted to answer 1/2, by thinking there are only two 
choices: boy and girl. 

In fact, the probability is 1/3, because the possible situations are 
three: 

boy–girl (BF) 
girl–boy (FB) 
boy–boy (BB) 
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and one of them is favorable, namely (BB).  
The initial information refers to both children as a group and not 

to a particular child from the group.  
In the case of estimation of 1/2 , the error comes from 

establishing the sample space (and, implicitly the field of events) as 
being {B, F}, when in, fact it, is a set of ordered pairs: {BF, FB, 
BB}.  

The probability would be 1/2 if one of the two children had been 
fixed by hypothesis (as example: the oldest is a boy or the tallest is a 
boy). 

For many people, the famous birthday problem is another 
example of contradiction with their own intuitions: 

If you randomly choose twenty-four persons, what do you think 
of the probability of two or more of them having the same birthday 
(this means the same month and the same day of the year)?  

Even if you cannot mentally estimate a figure, intuitively you feel 
that it is very low (if you do not know the real figure in advance). 

Still, the probability is 27/50, which is a little bit higher than 50 
percent! 

A simple method of calculus to use here is the step by step one: 
The probability for the birthday of two arbitrary persons not to be 

the same is 364/365 (because we have one single chance from 365 
for the birthday of the first person to match the birthday of the 
second).  

The probability for the birthday of a third person to be different 
from those of the other two is 363/365; for the birthday of a fourth 
person is 362/365, and so on, until we get to the last person, the 
24th, with a 342/365 probability. 

We have obtained twenty-three fractions, which all must be 
multiplied to get the probability of all twenty-four birthdays to be 
different. The product is a fraction that remains as 23/50 after 
reduction. 

The probability we are looking for is the probability of the 
contrary event, and this is 1 – 23/50 = 27/50. 

This calculus does not take February 29 into account, or that 
birthdays have a tendency to concentrate higher in certain months 
rather than in others. The first circumstance diminishes the 
probability, while the second increases it. 
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If you bet on the coincidence of birthdays of twenty-four persons, 
on average you would loose twenty-three and win twenty-seven of 
each fifty bets over time. 

Of course, the more persons considered, the higher the 
probability. 

With over sixty persons, probability gets very close to certitude. 
For 100 persons, the chance of a bet on a coincidence is about 

3000000 : 1. 
Obviously, absolute certitude can be achieved only with 366 

persons or more.  
  

One of the most curious behaviors based on false intuition is that 
of lottery players, where the winning probabilities are extremely 
low. 

As a game of chance that offers the lowest winning odds, it is not 
predisposed to strategies. The player (regular or not) purely and 
simply tries his or her fortune, whether he or she knows the involved 
mathematical probabilities beforehand.  

Still, too few players stop contributing to the lottery, even when 
they hear or find what the real probability figures are. 

In a 6 from 49 lottery system, the probability of winning the 1st 
category with a single played variant (six numbers) is 1/13983816. 

If playing weekly during a lifetime (let us assume eighty years of 
playing, respectively, 4320 draws), the probability for that player to 
finally win improves to 1/3236. 

Still assuming that the person plays ten or even 100 variants 
once, he or she has a probability of 1/323 or 1/32, which is still low 
for a lifetime. And we did not even take into account the amount 
invested. 

What exactly makes lottery players persevere in playing by 
ignoring these figures? 

Beyond the addiction problems, there is also a psychological 
motivation of reference to community, having observation as a 
unique criterion.  

A regular player may ask himself or herself the question: “If 
people all around me win the lottery, why can’t I have my day once, 
too?” 

Probability theory cannot completely answer to that question, but 
in exchange it can answer the question why that player has not won 
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until the present moment: because the probability of winning is very 
close to zero. 

Another example of false intuition is still related to the lottery. 
Most players avoid playing the variant 1, 2, 3, 4, 5, 6. Their 

argument is intuitive: It is impossible for the first six numbers to be 
drawn. 

Indeed, it is almost impossible, in the sense that the probability of 
drawing that variant is 1/13983816.  

Still, this probability remains the same for any played variant 
(assuming the technical procedure of drawing is absolutely random). 

There are no preferential combinations, so that particular variant 
has not at all an inferior status from point of view of possibility of 
occurrence. 

Moreover, if someone won by playing that variant, the amount 
won would be much higher than in the case of other played variant, 
because the winning fund will be divided (eventually) among fewer 
players. 

Thus, the optimal decision would be to play that particular variant 
instead of others. Of course, this decision remains optimal as long as 
most players are not acquainted with this information. 

 
False intuition successfully manifests in several gaming 

situations in gambling.  
The so-called feeling of the player, which at a certain moments 

will influence a gaming decision, is very often a simple illusory 
psychical reaction that is not analytically grounded. 

Probability represents one of the domains in which intuition may 
play bad tricks, even for persons with some mathematical education. 

Therefore, intuition must not be used as a calculus tool or for 
probability estimation. 

A correct probability calculus must be based on minimal, but 
clear, mathematical knowledge and must follow the basic logical 
algorithm of the application process, starting with framing the 
problem, then establishing the probability field and the calculus 
itself.  

This process is described in detail in chapter titled Beginner’s 
Calculus Guide. 
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PROBABILITY THEORY BASICS 
 
 

In this chapter we present the main set of notions and foundation 
results for the mathematical concept of probability and probability 
theory. 

Because this guide is addressed principally to beginners, we have 
limited it to the notions leading to the rigorous definition of 
probability and the properties generating the formulas that are 
necessary to practical calculus as well, especially for discrete and 
finite cases. 

 
 
 
Denotation convention 
In this chapter as well as in the following chapters that contain 

solved applications, the entire range of denotations corresponding to 
a specific operation or definition are used without their being 
limited.  

For example, for the operation of multiplication, we use the 
symbols "","" ⋅×  or no sign (in case of algebraic products that 
contain letters); for the operation of division we use the symbols 

"",:""  or /"" ; and for convergence we use the denotations 

"","","lim" aaaaaa n
n

n
nnn

→ →= ∞→

∞→
, etc. 
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Fundamental notions 
 

 
Sets 
 
The set concept is a primary one in the sense that it cannot be 

defined through other mathematical notions.  
In mathematics, the word set represents any well-defined 

collection of objects of any type (in the sense that we can decide 
whether a certain object belongs to respective collection or not) 
called elements of the set.  

Specifying a set means enumerating its constituent objects or 
indicating a specific property of these objects (a common property 
that other objects do not have). 

The sets are denoted in uppercase letters and the description of 
their elements is enclosed in braces. 

 
Examples:  A = { }zyx ,, ; B = { }8,5,3,2 ; C = { }31, ≤≤∈ xRx . 
 
In certain theoretical constructions, we refer to objects that 

belong to a certain class of elements as a base set or reference set, 
usually denoted by Ω . 

 
Example:  The set of real valued numbers R can be considered a 

base set for its subsets: the set of integer numbers Z, of natural 
numbers N, of positive real numbers R + . 

 
A set can contain a finite or infinite number of elements. A set 

with no elements is called an empty set and is denoted by φ . 
 
Example:  The set of natural satellites of the Moon is an empty 

set. 
 
If A is a set, B is called a subset of A if any element of B is also 

an element of A. 
If Ω  is a base set, we denote by P (Ω ) the set of all parts of Ω .  
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So P (Ω ) contains a number of parts A, B, C, … that are 
individually well defined as sets. Therefore, the elements of P (Ω ) 
are subsets of Ω . 

Two sets are said to be equal if they contain the same elements. 
 

Consider the following operations on P (Ω ): 
 
1.  The union of two sets A and B, denoted by A∪B, is the set of 

elements that belong to A or B. 
Example:  If  A = { }7,5,3,2  and  B = { }11,9,5,3 , then A∪B = 

{ }11,9,7,5,3,2 . 
 
2.  The intersection of two sets A and B, denoted by A∩B, is the 

set of elements that belong to both A and B.  
In the previous example, A∩B = { }5,3 . 
 
If  A∩B =φ , we call the sets A and B mutually exclusive or 

disjoint. 
 
3.  The complement of A, denoted by A C , is the set of elements 

from Ω  that do not belong to A. Obviously, A∪A C = Ω . 
 
4.  The difference of sets A and B, denoted by A – B or A / B, is 

the set of elements from A that do not belong to B.  
In the above example, A – B = { }7,2  and  B – A = { }11,9 . 
 
Say that set A is included in set B (it is a subset of B) and denote 

it by A⊂B (or B⊃ A), if any element from A is an element of B.  
 
The following properties, which are intuitively obvious, are 

characteristic for P (Ω ): 
1.  Ω∈P (Ω ), ∈φ P (Ω ). 
2.  A∈P (Ω ) ⇒  A C ∈P (Ω ). 
3.  A, B∈P (Ω ) ⇒  A∪B ∈P (Ω ). 
4.  A, B∈P (Ω ) ⇒  A∩B ∈P (Ω ). 
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……………….. missing part ………………………… 
 
Field of events. Probability 
 
 
Probability theory deals with the laws of evolution of random 

phenomena. Here are some examples of random phenomena: 
1.  The simplest example is the experiment involving rolling a 

die; the result of this experiment is the number that appears on the 
upper side of the die. Even though we repeat the experiment several 
times, we cannot predict which value each roll will take because it 
depends on many random elements like the initial impulse of the 
die, the die’s position at the start, characteristics of the surface on 
which the die is rolled, and so on. 

2.  A person walks from home to his or her workplace each day. 
The time it takes to walk that distance is not constant, but varies 
because of random elements (traffic, meteorological conditions, and 
the like). 

3.  We cannot predict the percentage of misfires when firing a 
weapon a certain number of times at a target. 

4.  We cannot know in advance what numbers will be drawn in a 
lottery. 

In these experiments, the essential conditions of each experiment 
are unchanged. All variations are caused by secondary elements that 
influence the result of the experiment.  

Among the many elements that occur in the phenomena studied 
here, we focus only on those that are decisive and ignore the 
influence of secondary elements. This method is typical in the study 
of physical and mechanical phenomena as well as in technical 
applications. 

In the study of these phenomena, there is a difference of principle 
between the methods that allow the essential elements that 
determine the main character of the phenomenon to be taken into 
account and those methods that do not ignore the secondary 
elements that lead to errors and perturbations.  

The randomness and complexity of causes require special 
methods of study of random phenomena, and these methods are 
elaborated by probability theory. 
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The application of mathematics in the study of random 
phenomena is based on the fact that, by repeating an experiment 
many times in identical conditions, the relative frequency of a 
certain result (the ratio between number of experiments having one 
particular result and total number of experiments) is about the same, 
and oscillates around a constant number. If this happens, we can 
associate a number with each event; that is, the probability of that 
event. This link between structure (the structure of a field of events) 
and number is the equivalent of the mathematics of the transfer of 
quality into quantity.  

The problem of converting a field of events into a number is 
equivalent to defining a numeric function on this structure, which 
has to be a measure of the possibility of an event occurring. Because 
the occurrence of an event is probable, this function is named 
probability.  

Probability theory can only be applied to phenomena that have a 
certain stability of the relative frequencies around probability 
(homogeneous mass phenomena). This is the basis of the 
relationship between probability theory and the real world and daily 
practice. 

So, the scientific definition of probability must first reflect the 
real evolution of a phenomenon.  

Probability is not the expression of the subjective level of man’s 
trust in the occurrence of the event, but the objective 
characterization of the relationship between conditions and events, 
or between cause and effect.  

The probability of an event makes sense as long as the set of 
conditions is left unchanged; any change in these conditions changes 
the probability and, consequently, the statistical laws governing the 
phenomenon.  

The discovery of these statistical laws resulted from a long 
process of abstraction. Any statistical law is characterized, on the 
one hand, by the relative inconstancy or the variability of various 
objects’ activity, and therefore we cannot predict the evolution of an 
individual object. On the other hand, for a large set of phenomena a 
stable constancy takes place, and this can be expressed by the 
statistical law. 
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Practical statistics works first with finite fields of events, while 
physical and technical experiments take place on infinite fields of 
events. 

 
 
Field of events 
 
In probability theory, the studied events result from random 

experiments (trials) and each performance of an experiment is called 
a test.  

The result of a test is called an outcome. An experiment can have 
more than one outcome, but any test has a single outcome.  

An event is a set of outcomes. 
As a result of a test with outcome e, an event A occurs if Ae∈  

and does not occur if Ae∉ . 
 
Example:  
In the roll of a die, the set of all possible outcomes is  

Ω = { }6,5,4,3,2,1 . Some events are: A = { }5,3,1  – uneven  
number, B = { }4,3,2,1  – less than the number 5, C = { }6,4,2  – 
even number.  

If rolling a 3, events A and B occur.  
 
Denote by Ω  the set of all possible outcomes of an experiment 

and by P (Ω ) the set of all parts of Ω . 
Ω  is called the set of outcomes or the sample space. 
The random events are elements of P (Ω ). 
On the set Σ  of the events associated with an experiment, we can 

introduce three operations that correspond to the logical operations 
or, and, non. Let  A, B∈  Σ . 

a)  A or B is the event that occurs if, and only if, one of the events 
A or B occurs. This event is denoted by A∪B and is called the union 
of events A and B. 

b)  A and B is the event that occurs if, and only if, both events A 
and B occur. This event is denoted by A∩B and is called the 
intersection of events A and B. 
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c)  non A is the event that occurs if, and only if, event A does not 
occur. This event is called the complement (opposite) of A and is 
denoted by A C . 

If we attach to each event the set of tests through which it occurs,  
then the operations between events revert to the respective 
operations between sets of corresponding tests, so the designations 
a), b) and c) are justified.  

The results of the operations with events are also events attached 
to their respective experiments. 

 
If  A∩B =φ , meaning A and B cannot occur simultaneously, we 

say that A and B are incompatible (mutually exclusive) events. 
If Ω=∪ BA , we say that A and B are collectively exhaustive. 
 
In the set Σ  of events associated with a certain experiment, two 

events with special significance exist, namely, event Ω  = A∪A C  
and event φ = A∩A C . 

The first consists of the occurrence of event A or the occurrence 
of event A C , which obviously always happens; that means this event 
does not depend on event A. It is natural to call Ω  the sure event.  

Event φ  consists of the occurrence of event A and the occurrence 
of event A C , which can never happen. This event is called the 
impossible event. 

 
Let A, B∈ Σ . We say that event A implies event B and write 

A⊂B, if, when A occurs, B necessarily occurs.  
If we have A⊂B and B⊂A, we say that events A and B are 

equivalent and write A = B (this reverts to the equality of the sets of 
tests that correspond to respective events). 

The implication between events is a partial order relation on the 
set of events and corresponds to the inclusion relation from Boole 
algebras. 

 
Definition:  An event A∈ Σ  is said to be compound if two events 

B, C∈ Σ , B≠ A, C≠ A exist, such that A = B∪C. Otherwise, the 
event A is said to be elementary. 
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……………….. missing part ………………………… 
 
Probability properties 
 
We have the following properties of the probability function: 
 
(P1)  For any Σ∈A , we have )(1)( APAP C −= . 
 
(P2)  0)( =φP . 
 
(P3)  Any Σ∈A , 1)(0 ≤≤ AP . 
 
(P4)  Any Σ∈21, AA  with 21 AA ⊂ , we have  P(A 1 )≤P(A 2 ). 
 
(P5)  Any Σ∈21, AA , we have 

)()()( 21212 AAPAPAAP ∩−=− . 
 
(P6)  If  Σ∈21, AA , 21 AA ⊂ , then )()()( 1212 APAPAAP −=−  
 
(P7)  Any Σ∈21, AA , we have 

)()()()( 212121 AAPAPAPAAP ∩−+=∪ . 
 
(P8)  Any Σ∈21, AA , we have )()()( 2121 APAPAAP +≤∪ . 
 
(P9)  If  Σ⊂≤≤ niiA 1)( , then 

+∩−=∪∪∪ ∑∑
<= ij

ji

n

i
in AAPAPAAAP )()()...(

1
21  

)...()1(...)( 21
1

n
n

kji
kji AAAPAAAP ∩∩∩−++∩∩+ −

<<
∑ . 

This property is also called the inclusion-exclusion principle. 
 
(P10)  Let Σ⊂≤≤ niiA 1)(  be events, with   

0)...( 121 ≠∩∩∩ −nAAAP . Then: 
).../()/()()...( 21312121 AAAPAAPAPAAAP n ∩=∩∩∩  

).../( 121 −∩∩∩ nn AAAAP . 
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The previous properties represent formulas currently used in 

probability calculus on a finite field of events. 
Property (P9) is the main calculus formula for applications in 

finite cases.  
 
Applications: 
 
1)  Two shooters are simultaneously shooting one shot each at a 

target. The probabilities of target hitting are 0.8 for the first shooter 
and 0.6 for the second. Calculate the probability for the target to be 
hit by at least one shooter. 

 
Answer: 
Let  A i  – shooter number i (i = 1, 2) hits the target  be the events. 
The events 1A  and 2A are independent, so 

)()()( 2121 APAPAAP ⋅=∩  (See the section titled Independent 
events. Conditional probability). We have, according to (P7): 

=∩−+=∪ )()()()( 212121 AAPAPAPAAP  
92.06.08.06.08.0 =×−+= . 

 
2)  A batch of 100 products is amenable to quality control. The 

batch will be rejected if at least one defective product among five 
randomly controlled products is found. Assuming the batch contains 
4 percent defective products, calculate the probability for the batch 
to be rejected. 

 
Answer: 
Denoting by A the event the batch must be rejected, we calculate 

)( CAP .  
We denote by kA  the event controlled product number k is 

accepted (not defective), 51 ≤≤ k . Events  A k  are not independent. 
We have: 

).../()()...()( 12151 AAPAPAAPAP C =∩∩=
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96
92

97
93

98
94

99
95

100
96)/( 43215 ⋅⋅⋅⋅=∩∩∩ AAAAAP   and 

)(1)( CAPAP −= . (We have used (P10) and (P1)) 
 
3)  An urn contains twenty balls numbered from 1 to 20. If we 

choose four different numbers between 1 and 20 and randomly 
extract four balls from urn, we can calculate the probability for at 
least two extracted balls to have numbers from the chosen four. 

 
Answer (to follow this solution, read the chapter titled 

Combinatorics): 
We call a variant any group of four different extracted balls. The 

whole number of possible variants is 48454
20 =C . Without 

restricting the generality, we can denote the chosen numbers by 1, 2, 
3, 4 (the probability is the same for any other four numbers). 

A variant containing numbers 1 and 2 has a (1, 2, x, y) form, with 
x, y receiving different values ( yx ≠ ) from 20 – 2 = 18 numbers. 

The number of combinations taken two at a time from the chosen 
four numbers is 62

4 =C , namely, (1, 2), (1, 3), (1, 4), (2, 3), (2,4),  
(3, 4). Let:  

1A – the extracted variant contains the balls numbered 1 and 2,  

2A  – the extracted variant contains the balls numbered 1 and 3,  

3A – the extracted variant contains the balls numbered 1 and 4,  

4A – the extracted variant contains the balls numbered 2 and 3,  

5A  – the extracted variant contains the balls numbered 2 and 4,  

6A  – the extracted variant contains the balls numbered 3 and 4. 
We can write, as sets: 

{ } { }{ }2,120...,,2,1,;);,,2,1(1 −∈≠= yxyxyxA , 
{ } { }{ }3,120...,,2,1,;);,,3,1(2 −∈≠= yxyxyxA , 
{ } { }{ }4,120...,,2,1,;);,,4,1(3 −∈≠= yxyxyxA , 
{ } { }{ }3,220...,,2,1,;);,,3,2(4 −∈≠= yxyxyxA , 
{ } { }{ }4,220...,,2,1,;);,,4,2(5 −∈≠= yxyxyxA , 
{ } { }{ }4,320...,,2,1,;);,,4,3(6 −∈≠= yxyxyxA . 
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Each of sets iA  (i =1, …, 6) has 1532
18 =C  elements (within a 

variant, the order of numbers does not matter). 
We must calculate )...( 621 AAAP ∪∪∪ . To do this, we apply 

property (P9) (the inclusion-exclusion principle).  
 

……………….. missing part …………………………. 
 
Observe that the two conditions from the definition of probability 

imply the axioms in the definition of measure. 
Therefore, this probability is a measure with ( ) 1=Ωµ , so it 

acquires all the properties of a measure. 
The terms currently used in the measure theory and those used in 

probability theory correspond as follows: 
 
 
 

Measure Theory Probability Theory 
Measurable space Field of events 

Tribe σ -field of events 
Measurable set Event 
Whole space Sure event 

Empty set Impossible event 
Measure space Probability field 

Measure of a set Probability of an event 
 
 
The properties of probability on a finite field also stand for the 

probability σ -fields (the properties (P1) to (P10) from the section 
titled Probability on a finite field of events). 

In addition, if { }P,, ΣΩ  is a probability σ -field, we also have the 
following properties: 

  
……………….. missing part …………………………. 
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The law of large numbers 
 
The previous theoretical statements defined the concept of 

probability on a field of events and offered tools for basic 
probability calculus.   

The result we present now is qualitative; in fact, it illustrates the 
way in which probability models the hazard.  

We enunciate the Law of Large Numbers, not in its general 
mathematical form, in order to avoid having to define more complex 
concepts, but in an exemplified particular form, in a way that 
everyone can understand.  

The particular enunciation is the following classic result, known 
as Bernoulli’s Theorem: 

The relative frequency of the occurrence of a certain event in a 
sequence of independent experiments performed under identical 
conditions converges toward the probability of that event.  

 
The theorem states that if A is an event, )( nE  a sequence of 

independent experiments, na the number of occurrences of event A 
after the first n experiments, then the sequence of non-negative 

numbers 







n
an  is convergent and its limit is P(A): 

)(/ APna n
n  → ∞→  

The expression na  is called frequency and the expression 
n
an  is 

called relative frequency. We exemplify this expression by 
considering the classical experiment of tossing a coin: 

 
….…………….. missing part …………………. 
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Classical discrete probability repartitions  
 
Bernoulli scheme 
Let us consider the following problem:  
Three independent shots are fired at a target. 
The probability of hitting the target is p for each of the three 

shots. Find the probability for two of the three shots hitting the 
target. 

Let A be the event two of the three shots hit the target and let 
)3,2,1( =iAi  be the events shot number i hit the target. 

A can be written as: 
( ) ( ) ( )321321321 AAAAAAAAAA CCC ∩∩∪∩∩∪∩∩= . 

The three parentheses are incompatible and the events they 
consist of are independent. This gives us the result: 

)()()()()()()()()()( 321321321 APAPAPAPAPAPAPAPAPAP CCC ++=

 Therefore, )1(3)( 2 ppAP −= . 
We can solve the following more general problem using a similar 

approach: 
Consider that n independent experiments are performed. In each 

experiment, event A may occur with probability p and does not 
occur with probability q = 1 – p. Find the probability for event A to 
occur exactly m times in the n experiments. 

Let mB be the event A occurs exactly m times in the n experiments 
and let )...,,2,1( niAi =  be the events A did not occur in the i-th 
experiment. 

Each variant of occurrence of mB consists of m occurrences of 
event A and of n – m nonoccurrences of A (that is n – m occurrences 
of CA ).  

We then have: 
( )∪∩∩∩∩∩∩= +

C
n

C
mmm AAAAAB ...... 121

( ) ∪∪∩∩∩∩∩ ++ ......... 2121
C
n

C
mm

C AAAAA
( )nmn

C
mn

C AAAA ∩∩∩∩∩ +−− ...... 11 . 
The number of ways we can choose m experiments in which A 

occurs from the n experiments is m
nC .  
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All variants are incompatible and the experiments are 
independent, so: 

( ) , ...
m
n

m n m m n m m m n m
m m n n

C

P B P p q p q C p q− − −= = + + =����	���
 . 

Probabilities nmP ,  have the form of the terms from the 

development of the binomial ( )nqp + .  
This is why the field from this scheme (repartition, distribution) 

is called the binomial field (its elementary events can be considered 
elements of the Cartesian product nΩ = Ω× ×Ω" ). 

J. Bernoulli, especially, made this probability scheme the subject 
of research, and that is why it is also called Bernoulli scheme. 

The mean and dispersion of a random variable X that is 
binomially obtained can be easily calculated.  

They are  M(X) = np  and  npqXD =)(2 . 
Example: 
Two fighters with equal strength box 12 rounds (the probability 

for any of them to win a round is 1/2). Calculate the mean, 
dispersion and standard deviation of the random variable 
representing the number of rounds won by one fighter.  

Answer: 
The random variable X has the binomial repartition: 

12...,,1,
2
1)(

12

12 =





== kCkXP k . We have M(X) = 6, 3)(2 =XD  

and 3)( =XD . 
 

……………….. missing part ………………………… 
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COMBINATORICS 
 
 

Combinatorial analysis plays a major role in probability 
applications, from a calculus perspective, because many situations 
deal with permutations, combinations or arrangements. 

The correct approach to combinatorial problems and the ease of 
handling combinatorial calculus are 50 percent of the probability 
calculus abilities for games of chance. 

Therefore, this chapter contains many solved and unsolved 
practical applications that are useful for learning this calculus. 

As in the previous chapter on mathematics, the theoretical 
discussions present only definitions and important results, without 
demonstrations. 

 
……………….. missing part ………………………… 

 
In detail, the minimal numerical calculus for the two formulas is 

represented by the following algorithm: 
 
a)  For arrangements m

nA : 
1)  Calculate the difference n – m. 
2)  Calculate the product of all consecutive numbers from  
n – m + 1 to n. 
 
Examples: 
 
– Let us calculate 3

7A : 
1)  7 – 3 = 4 
2)  Calculate the product of all numbers from 4 + 1 = 5 to 7; 

namely, 5 6 7 210⋅ ⋅ = . 
3
7 210A =  

  
– Let us calculate 5

10A : 
 1)  10 – 5 = 5 
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 2)  Calculate the product of all numbers from 5 + 1 = 6 to 10; 
namely, 6 7 8 9 10 42 720 3024⋅ ⋅ ⋅ ⋅ = ⋅ = . 

 5
10 3024A =  

  
Other examples:  
 3

8 6 7 8 42 8 336A = ⋅ ⋅ = ⋅ =   
 7

17 11 12 13 14 15 16 17 98017920A = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ =  
  
b)  For combinations m

nC : 
1)  Calculate the difference n – m. 
2)  Calculate the product of all consecutive numbers from  

n – m + 1 to n. 
3)  Calculate the product of all consecutive numbers from 1 to m. 
4)  Divide the result obtained in step 2 by the result obtained in 

step 3. 
 
Examples: 
 
– Let us calculate 2

5C : 
1)  5 – 2 = 3 
2)  Calculate the product of all numbers from 3 + 1 = 4 to 5; 

namely, 4 5 20⋅ = . 
3)  Calculate the product of numbers from 1 to 2; namely, 

1 2 2⋅ = . 
4)  Divide the result obtained in step 2 by the result obtained in 

step 3, namely 20 : 2 10= . 
2
5 10C =  

 
– Let us calculate 5

12C : 
1)  12 – 5 = 7 
2)  Calculate the product of all numbers from 7 + 1 = 8 to 12; 
namely, 8 9 10 11 12⋅ ⋅ ⋅ ⋅ . 
3)  Calculate the product of all numbers from 1 to 5; namely, 

1 2 3 4 5⋅ ⋅ ⋅ ⋅ . 
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4)  Divide the result from step 2 by the result from step 3, by 

writing it as the fraction 8 9 10 11 12
1 2 3 4 5
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

; after the immediate 

reductions, we get 8 9 11 792⋅ ⋅ = . 
5
12 792C =  

  
Leaving the products from steps 2 and 3 in their uncalculated 

factorial form is recommended, because this allows the reduction of 
the fraction from step 4, and this operation spares us of a lot of 
additional calculations. 

 
Other examples: 

3
15

13 14 15 13 7 5 13 35 455
1 2 3

C ⋅ ⋅
= = ⋅ ⋅ = ⋅ =

⋅ ⋅
 

4
19

16 17 18 19 4 17 3 19 12 17 19 3876
1 2 3 4

C ⋅ ⋅ ⋅
= = ⋅ ⋅ ⋅ = ⋅ ⋅ =

⋅ ⋅ ⋅
 

 
The property m n m

n nC C −=  is useful in calculations, in the sense of 
simplifying them. This property of combinations must be used when 
the difference n – m is less than m, because it reduces the number of 
product factors. 

For example, for n = 57 and m = 53, we have 53 4
57 57C C= . 

Obviously, 4
57C  is more easily developed and calculated by 

applying the formula than 53
57C  because it contains the factorial 4! 

(instead of 53!):  4
57

54 55 56 57
4!

C ⋅ ⋅ ⋅
= ,  53

57
5 6 ... 57

53!
C ⋅ ⋅ ⋅

= . 

The property m n m
n nC C −=  must be applied, in general, when m and 

n are close in value to one another.  
 
Examples:  

5 2
7 7

6 7 21
2

C C ⋅
= = =  

8 3
11 11

9 10 11 3 5 11 165
2 3

C C ⋅ ⋅
= = = ⋅ ⋅ =

⋅
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19 6
25 25

20 21 22 23 24 25 10 7 22 23 5 177100
2 3 4 5 6

C C ⋅ ⋅ ⋅ ⋅ ⋅
= = = ⋅ ⋅ ⋅ ⋅ =

⋅ ⋅ ⋅ ⋅
 

 
At the final step of the calculus algorithm, after we obtain the last 

fraction, we can check for possible errors by following both the 
numerator and the denominator, which must show all the 
consecutive factors of the products from previous steps. 

Because the number of combinations (arrangements, 
permutations) is natural, total reduction of that fraction (complete 
evanescence of the denominator) is obligatory. 

If we find that the fraction cannot be reduced in totality, it is a 
sign that an error has occurred at the previous steps, and that 
calculus must be redone.  

 
 
Partitioning combinations 
 
Let us do the following exercise: unfold all 4-size combinations 

from the numbers (1, 2, 3, 4, 5, 6, 7). The whole number of these 
must be 4 3

7 7 35C C= = . 
This unfoldment must not be aleatory because doing otherwise 

risks losing combinations; in addition, some combinations end up 
being written more than once. To make a proper unfoldment, we use 
the following algorithm: While permanently maintaining the 
ascending order of the numbers from written combinations (from 
left to right), we successively increase the numbers starting from the 
right. When increasing the numbers is no longer possible, we 
increase the number from the first previous place of combination 
and continue the procedure until the capacity to increase is no longer 
possible. 

Choosing the ascending order does not affect the overall 
approach to solving the problem because the order of elements does 
not count within a combination. This procedure ensures that all 
combinations are enumerated, without omission, and avoids any 
repetition (double counting). 
 Here is how this unfoldment works concretely: 

Start with the combination (1234). Successively increase number 
4 from the last (fourth) place: (1235), (1236), (1237). Increasing the 
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number from the last place is no longer possible. Increase number 3 
from the third place by replacing it with 4: (1245), (1246), (1247). 
Follows to replace 4 with 5 on the third place: (1256), (1257). 

Replace 5 with 6 on the third place: (1267). Follows to change 
the second place: replace 2 with 3 and start with 4 on the third place: 
(1345), (1346), (1347). 

Replace 4 with 5 on the third place: (1356), (1357). 
Replace 5 with 6 on the third place: (1367). Again follows to 

change the second place with 4 instead of 3: (1456), (1457). 
Replace 5 with 6 on the third place: (1467). 
Replace 4 with 5 on the second place: (1567). 
Now, the combinations having number 1 on the first place are 

exhausted. Replace 1 with 2 on the first place and start with 3 on the 
second place and 4 on the third place: (2345), (2346), (2347). 

Put 5 on the third place: (2356), (2357). 
Put 6 on the third place: (2367). 
Replace 3 with 4 on the second place, and start with 5 on the third 

place: (2456), (2457). 
Put 6 on the third place: (2467). 
Replace 4 with 5 on the second place: (2567). Now, the 

combinations having number 2 on the first place are exhausted. Put 
3 on the first place and start with 4 on the second place and 5 on the 
third place: (3456), (3457). 

Put 6 on the third place: (3467). 
Replace 4 with 5 on the second place: (3567). Now, the 

combinations having number 3 on the first place are also exhausted. 
Replace 3 with 4 on the first place: (4567). This is the last counted 
combination. 

By counting all these unfolded combinations, we find thirty-five 
different combinations; therefore, the unfoldment is correct. 

 
We performed this algorithmic unfoldment in order to grasp the 

effective process of generating the combinations of elements of a 
given set and to see why repeated multiplications are the only 
elementary operations involved in the process of counting. 

In the example above, observe that: 
– For counting the 4-size combinations containing number 1, we 

fix this number and unfold all 3-size combinations containing the 
rest of numbers (2, 3, 4, 5, 6,7), which are in number of 3

6 20C = . 
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Indeed, by effectively counting the unfolded combinations 
containing 1, we find twenty combinations. 

A combination containing the number 1 can be written as (1xyz), 
where x, y and z are mutually different variables with values in the 
set { }2, 3, 4, 5, 6, 7 . 

By an abuse of denotation, we can write (1xyz) = (1)(xyz) = 
3
61 20C⋅ = , this means: the number of 4-size combinations 

containing the number 1 is equal to number of 1-size combinations 
containing 1 (namely, a single combination) multiplied by the 
number of 3-size combinations from the set of numbers left (2, 3, 4, 
5, 6, 7). 

Obviously, the same result (twenty) also stands for the number of 
combinations containing any of the numbers 2, 3, 4, 5, 6 or 7. 

Note that the total number of 4-size combinations of elements 
from the given set is not equal to the sum of these partial results 
(number of combinations containing 1 + number of combinations 
containing 2 + … + number of combinations containing 7)! 

This can be verified immediately (35 20 6≠ ⋅ ) and is explained by 
the fact that, through addition, some combinations are counted more 
than once (a combination containing 1 could also contain 2, etc.). 

– For counting the 4-size combinations containing the numbers 1 
and 2, we fix the numbers 1 and 2 and unfold all 2-size 
combinations of elements from the set of numbers left (3, 4, 5, 6, 7), 
in number of 2

5 10C = . 
By the same abuse of denotation, we can write (12xy) = (12)(xy) 

= 2
51 10C⋅ = : the number of 4-size combinations containing the 

numbers 1 and 2 is equal to number of 2-size combinations 
containing 1 and 2 (namely, a single combination) multiplied by the 
number of 2-size combinations from the set of numbers left (3, 4, 5, 
6, 7). Obviously, the same result (ten) also stands for the number of 
combinations containing any two given numbers (23), (35), (57), 
etc. 

– For counting the 4-size combinations containing the numbers 1, 
2 and 3, we fix the numbers 1, 2 and 3 and unfold all 1-size 
combinations of elements from the set of numbers left (4, 5, 6, 7), in 
number of 1

4 4C = . 
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By the same abuse of denotation, we can write (123x) = (123)(x) 
= 1 4 4⋅ = : the number of 4-size combinations containing the 
numbers 1, 2 and 3 is equal to number of 3-size combinations 
containing 1, 2 and 3 (namely, a single combination) multiplied by 
the number of 1-size combinations from the set of numbers left (3, 
4, 5, 6, 7). Obviously, the same result (four) also stands for the 
number of combinations containing any three given numbers (234), 
(357), (136), etc. 

In the previous exercise, the count of combinations containing 
given numbers having the form (1xyz), (12xy) or (123x) stands for 
classic examples of problems that impose additional conditions on 
the elements of combinations. 

Their solution uses the graphic representations (1xyz) = (1)(xyz), 
(12xy) = (12)(xy) and (123x) = (123)(x), which simplify the calculus 
by reductions to lower size combinations. 

Call this procedure partitioning of combinations. 
The immediate generalization of this exercise is as follows: 
Let E A B C D= ∪ ∪ ∪  be a set, with A, B, C and D being 

mutually exclusive.  
If from all 4-size combinations of elements of E we want to count 

those containing one element from A, we write: 
(abcd) = (a)(bcd), where a A∈  (this is the additional condition 

imposed on the elements of combinations); (a) is the number of 
elements of A and (bcd) the number of 3-size combinations of 
elements from B C D∪ ∪ ; these two numbers are multiplied; 
observe that the sets A and B C D∪ ∪  are disjoint. 

If we want to count the combinations containing two elements 
from A B∪ , we write: 

(abcd) = (ab)(cd), where ,a b A B∈ ∪ ; (ab) is the number of 
2-size combinations of elements of A B∪  and (cd) the number of 
2-size combinations of elements of C D∪ ; observe that the sets 
A B∪  and C D∪  are exclusive (this is an obligatory condition for 
the partitioning procedure to be applied; otherwise, some 
combinations would be counted more than once). 

The procedure stands for combinations of any size, regardless of 
the conditions on their elements. The generalization is as follows: 

Let us consider the n-size combinations ( )1 2... na a a  of elements of 

a finite set A. Let ( )1 2, , ..., mk k k  be a partition of n ( ik  are natural 
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numbers such that 1 2 ... mk k k n+ + + = ) and 
1 2
, , ...,

mk k kA A A a 
partition of the set A (

ikA are mutually exclusive sets such that 

1
i

m

k
i

A A
=

=∪ ). Then: 

( ) ( )( ) ( )1 1 1 2 1 11 2 1 2 1 ... 1... ... ... ... ...
mn k k k k k k na a a a a a a a a a
−+ + + + +=  

As we stated earlier, this is an abuse of denotation and represents 
a procedure rather than a formula. The partitioning of combinations 
is, in fact, a graphic representation that allows us to view a property 
and simplify the calculus. 

Graphic representations, and literal denotations, even those that 
are considered abusive, are highly recommended in combinatorial 
problems. They aid the correct framing of a problem by applying the 
proper properties and the correct performance of calculus. 

The following examples show how these procedures work in 
concrete applications. 

 
 
Applications  
 

 
Solved applications 
 
1)  We have fifteen books and we must fill a shelf that can 

accommodate only eleven books. 
a)  How many ways can we arrange eleven books in the shelf, by 

choosing from the fifteen? 
b)  How many ways can we choose the eleven books? 
 
Solution: 
 
a)  We can directly apply the arrangement formula; the searched 

number is 11
15A ; according to the minimal calculus algorithm for 

arrangements, we find: 
1)  15 – 11 = 4 
2)  Do the product of numbers from 4 + 1 = 5 to 15: 
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5 6 7 8 9 10 11 12 13 14 15⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ =  
30 56 90 132 13 14 15 54486432000⋅ ⋅ ⋅ ⋅ ⋅ ⋅ = . 

11
15 54486432000A =  

 
b)  The choices do not take order into account.  
We deal here only with combinations, and the searched number is 

11
15C . 
We may use the property 11 15 11 4

15 15 15C C C−= =  to reduce the calculus 
and then follow the minimal calculus algorithm for combinations: 

1)  15 – 4 = 11 
2)  Do the product of numbers from 12 to 15:  12 13 14 15⋅ ⋅ ⋅  
3)  Do the product of numbers from 1 to 4:  2 3 4⋅ ⋅  

4)  Do the ratio 12 13 14 15
2 3 4
⋅ ⋅ ⋅
⋅ ⋅

; after reductions, we get 

13 7 15 1365⋅ ⋅ = . 
11
15C  = 1365 

 
2)  How many ways can we arrange the letters of the word 

MAJORITY? 
 
Solution: 
The letters are different and total seven, so the total number of 

permutations is 7! 2 3 4 5 6 7 24 30 7 24 210 5040= ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ = ⋅ = . 
 
3)  At 6/49 lottery system (six numbers are drawn from a total of 

forty-nine, from 1 to 49, with one played variant having six 
numbers), calculate the total number of possible variants that can be 
drawn. 

 
Solution:  
A drawn variant represents a 6-size combination from forty-nine 

numbers, so the searched number is 6
49C : 

1)  49 – 6 = 43 
2)  Do the product 44 45 46 47 48 49⋅ ⋅ ⋅ ⋅ ⋅  
3)  Do the product 2 3 4 5 6⋅ ⋅ ⋅ ⋅  
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4)  Do the ratio 
6
49

44 45 46 47 48 49 44 3 46 47 48 49 13983816
2 3 4 5 6

C⋅ ⋅ ⋅ ⋅ ⋅
= ⋅ ⋅ ⋅ ⋅ ⋅ = =

⋅ ⋅ ⋅ ⋅
. 

(Let us hope that gamblers who usually play using a few variants 
are not too disappointed!) 

 
4)  In a 6/49 lottery system, calculate how many possible variants 

containing the numbers 5 and 11 exist. 
 
Solution: 
By fixing the two numbers, the variants containing them will 

have the form (5 11 xyzt), where x, y, z and t are distinct numbers 
belonging to the set { } { }1, 2, ..., 49 5,11− , which has 49 – 2 = 47 
elements. We do the partitioning  (5 11 xyzt) = (5 11)(xyzt). 

(5 11) represents one combination and the number of (xyzt) 
combinations is given by the number of 4-size sets that can be built 
from the numbers left (47), namely, 4

47C . Then, the searched number 

is 4 4
47 47

44 45 46 471 178365
2 3 4

C C ⋅ ⋅ ⋅
⋅ = = =

⋅ ⋅
. 

5)  In a 6/49 lottery system, calculate how many variants 
containing the numbers 1, 2 and 3 exist. 

 
Solution: 
The respective variants will have a (123xyz) form, with x, y and z 

mutually different and different from 1, 2 and 3. The set from which 
x, y and z can take values has 46 elements (49 – 3). 

By partitioning, we have  (123xyz) = (123)(xyz). 
Denoting by C the searched number, we have: 

3 3
46 46

44 45 461 15180
2 3

C C C ⋅ ⋅
= ⋅ = = =

⋅
 (1 is the number of (123) 

combinations and 3
46C  is the number of (xyz) combinations). 

 
6)  In a 6/49 lottery system, calculate: a) how many variants 

containing only even numbers exist; b) how many variants 
containing only uneven numbers exist. 

 
Solution: 
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a)  The even numbers are 2, 4, 6, 8, …, 48, and number 24 in 
total (we have 2 1 2= ⋅ , 4 2 2= ⋅ , 6 3 2= ⋅ , …, 48 24 2= ⋅ ; the count 
was done by following the first factor of the products). 

The number of combinations of six even numbers is then 
6
24

19 20 21 22 23 24 134596
2 3 4 5 6

C ⋅ ⋅ ⋅ ⋅ ⋅
= =

⋅ ⋅ ⋅ ⋅
. 

b) The uneven numbers are 1, 3, 5, 7, …, 49, and total 49–24=25 
(we have subtracted the number of even numbers). 

The number of combinations of six uneven numbers is then 
6
25

20 21 22 23 24 25 177100
2 3 4 5 6

C ⋅ ⋅ ⋅ ⋅ ⋅
= =

⋅ ⋅ ⋅ ⋅
. 

 
7)  In a 6/49 lottery system, find the number of possible variants 

containing exactly four even numbers.  
  
Solution: 
Let us denote such variant by (PPPPxy), where P are less than 

forty-nine even numbers and x, y are distinct and uneven. 
This is obviously an abuse of denotation. Repeating the same 

letter P does not mean those numbers are equal (a combination 
cannot contain identical elements); it only means they are even and 
mutually different. This denotation simplifies the partitioning and 
calculus by showing the elements on which the additional conditions 
were imposed. 

(PPPPxy) = (PPPP)(xy) 
The number of (PPPP) combinations is the number of 4-size 

combinations from twenty-four (the number of even numbers); 
namely, 4

24C  , and the number of (xy) combinations is the number of 
2-size combinations from twenty-five (the rest of numbers; namely, 
the uneven ones), respectively 2

25C . 
We then calculate: 

4 2
24 25

21 22 23 24 24 25 3187800
2 3 4 2

C C ⋅ ⋅ ⋅ ⋅
⋅ = ⋅ =

⋅ ⋅
. 

 
8)  In a 5/40 lottery system (six numbers are drawn from a total 

of forty, from 1 to 40, with one played variant having five numbers), 
calculate the total number of possible variants that can be drawn. 
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……………….. missing part ………………………… 
 
17)  In Texas Hold’em, how many ways can the pocket cards be 

dealt to a player so that they contain at least one ace? 
 
Solution: 
Denoting an ace by A (A can be A♣, A♠, A♦, A♥), we can count 

the combinations of (Ax) form, with x A≠  and (AA) form, the 
results following to be added. 

For (Ax): A takes four values and x takes 52 – 4 = 48 values, so 
the number of combinations is 4 48 192⋅ = . 

For (AA): The number of combinations is 2
4 6C = . 

Then, the number of combinations containing at least one ace is 
192 + 6 = 198. 

 
18)  In Texas Hold’em, how many ways can the pocket cards be 

dealt to a player so that they to contain two identical symbols? 
 
Solution: 
For a specific symbol S, the combinations to be counted have an 

(SS) form and their number is  2
13

12 13 78
2

C ⋅
= = . We have four 

symbols, so the total number of combinations is 4 78 312⋅ = . 
 
19)  You are participating in a Texas Hold’em game and are dealt 

the 7♣ and the 8♦. How many ways can the flop cards be distributed 
so that they contain: a) exactly two clubs; b) a minimum of two 
clubs? 

 
Solution: 
a)  A flop combination containing exactly two clubs has a (CCx) 

form, with x C≠  (C = clubs); C takes 13 – 1 = 12 values (a clubs 
card from a total of 13 is in the hand); the set of values x can take 
has 52 – 2 – 2 – 10 = 38 elements (we have subtracted the two 
pocket cards, the two CC cards from the flop combination and the 
ten clubs left). (CCx)=(CC)(x)  

The number of combinations is  2
12

11 1238 38 2508
2

C ⋅
⋅ = ⋅ = . 
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b)  Let us calculate the number of combinations containing three 

clubs. These have a (CCC) form and number  3
12

10 11 12 220
2 3

C ⋅ ⋅
= =

⋅
. 

In total, we have 220 + 2508 = 2728 combinations containing at 
least two clubs. 

 
20)  In Texas Hold’em, how many possible hands containing a 

pair (any) can a player be dealt?  
 
Solution: 
For a specific pair (PP) (PP are two different cards of same 

value), there are 2
4 6C =  possible combinations (P takes four 

values). We have thirteen values for all cards; therefore, the total 
number of combinations is  2

413 13 6 78C⋅ = ⋅ = . 
 
21)  At a slot machine (a machine with 3, 4 or 5 reels, each reel 

have the same number of different symbols, with 1, 2 or 3 winning 
lines; after an aleatory spin of the reels, a combination of symbols 
that may win or not occurs on the winning line) with three reels, 
seven symbols and one winning line: 

a)  How many possible combinations of symbols can occur on the 
winning line? b)  How many of these combinations contain three 
identical symbols? c)  How many of these combinations contain 
exactly two identical symbols? 

 
Solution: 
a)  Because there are seven symbols on each of the three reels, we 

have 7 7 7 343⋅ ⋅ =  possible combinations. 
b) For a specific symbol S, we have a single combination 

containing 3 S-symbols, namely (SSS). In total, we have 7 1 7⋅ =  
combinations. 

c) For a specific symbol S, the combinations to be counted have 
the form: 

(SSx), x S≠ , in number 1 1 6 6⋅ ⋅ =  
(SxS), x S≠ , in number 1 1 6 6⋅ ⋅ =  
(xSS), x S≠ , in number 1 1 6 6⋅ ⋅ = . 
Obviously, the order of elements has been taken into account. 
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We have no common combinations among these combinations 
(such a combination would have an (SSS) form, but x S≠ ), so we 
are allowed to add the three numbers and we find 18. We have seven 
symbols; therefore, the total number of searched combinations is 
7 18 126⋅ = . 

 
22)  How many possible ways can three dice fall after they have 

been rolled (with respect to the numbers shown on their superior 
side)? 

 
Solution: 
The problem is similar to point a) of the previous problem (we 

use a die in place of a reel and the die numbers in place of symbols 
on the reel). Each die has six numbers, so the three dice can show 
6 6 6 216⋅ ⋅ =  possible combinations after rolling (one certain 
number on each die—the order does count). 

 
……………….. missing part ………………………… 

 
Unsolved applications 
 
1)  Calculate:  C(8, 3), C(11, 8), C(17, 5), C(19, 12), C(25, 7), 

C(41, 16), C(52, 43), A(7, 2), A(11, 7), A(15, 12), A(23, 4),  
A(31, 15), A(40, 11), A(47, 3). 

 
2)  In a 6/49 lottery, find: 
a)  the number of drawn variants possible containing numbers 5 

and 17; 
b)  the number of drawn variants possible containing numbers 2, 

7 and 10; 
c)  the number of drawn variants possible containing exactly 

three even numbers; 
d) the number of drawn variants possible containing a minimum 

of three even numbers; 
e)  the number of drawn variants possible containing only number 

that are larger than 12; 
f)  the number of drawn variants possible containing at least three 

numbers larger than 15. 
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3)  In a 5/40 lottery, find: 
a) the number of possible played variants containing a minimum 

of three even numbers; 
b)  the number of drawn variants possible containing a minimum 

of three even numbers; 
c)  the number of possible variants played containing exactly two 

numbers less than 15; 
d)  the number of drawn variants possible containing exactly two 

numbers less than 15; 
e)  the number of possible played variants containing a minimum 

of two numbers less than 17; 
f)  the number of drawn variants possible containing a minimum 

of two numbers less than 19. 
 
3)  In a 52-card classical poker game, find: 
a)  the number of possible hands a player can be dealt that contain 

at least one K (king); 
b)  the number of possible hands a player can be dealt that 

contain exactly three ♦ symbols (diamonds); 
c)  the number of possible hands a player can be dealt that contain 

exactly three identical symbols (any); 
d)  the number of possible hands a player can be dealt that 

contain two pairs (any; no full house, no quads, but exactly two 
different pairs); 

e)  the number of possible hands a player can be dealt, only 
containing cards with a value larger than 9. 

 
5)  Same problem for a 32-card classical poker game. 
 
6)  In Texas Hold’em Poker, find the number of possible hands a 

player can be dealt, containing: 
a)  one 2 and one 5; 
b)  at least one 2 or at least one 5; 
c)  one less than 10 card and one larger than 10; 
d)  cards having different symbols (unsuited). 
 
7)  In Texas Hold’em, from the perspective of a neutral observer, 

calculate how many ways the five community cards can be 
distributed such that: 
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a)  to contain exactly three diamonds (♦); 
b)  to contain a minimum of three diamonds; 
c)  to contain exactly three identical symbols (any); 
d)  to contain a minimum of three identical symbols; 
e)  to contain exactly three cards with same value; 
f)  to contain a minimum of three cards of same value (3 or 4); 
g)  to be all consecutive (for example: A 2 3 4 5 or 3 4 5 6 7); 
h)  to contain exactly four consecutive cards. 
 
8)  In Texas Hold’em, you are participating as a player and you 

were dealt 2♦ and J♠. How many ways can the flop cards be 
distributed so that they contain: 

a)  exactly two clubs; 
b)  a minimum of two clubs; 
c)  2’s or J’s (however many of them); 
d)  2’s and J’s (however many); 
e)  a pair of 2’s (no triple); 
f)   a pair of J’s 
g)  a pair of  2’s or a pair of J’s (no triple). 
 
9)  At a slot machine with five reels, eight symbols and one 

winning line: 
a)  How many combinations can occur on the winning line? 
b)  How many of them contain exactly three identical symbols 

(any)? 
c)  How many of them contain a minimum of three identical 

symbols (any)? 
 
10) How many ways can four dice fall after being rolled? How 

many ways can four dice fall after being rolled, such that the sum of 
numbers shown is 17? 

 
11)  How many ways can a sport betting ticket be filled, if on the 

ticket are seven matches and the result of the bet is the total number 
of scored goals: 0 – 3, 4 – 6, 7 – 10 and  >10 (four variants)? 
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BEGINNER’S CALCULUS GUIDE 
 
 

Introduction 
 
The previous chapters presented the probability notion in all its 

interpretations in lay language as well as at the mathematical and 
philosophical level.  

As can be seen in these sections, no interpretation variant can 
omit the mathematical model given by probability theory.  

When we speak about probability calculus, we refer strictly to the 
mathematical calculus tools provided by this theory, and exclude 
other subjective interpretations.  

Although this calculus often assumes hypothetical 
approximations or pure calculation, in the end or even from the start, 
the numerical results thus obtained are much more relevant than any 
other subjective estimation based on intuition or on 
nonmathematical interpretations of probability.  

This chapter is a guide to the calculus of numerical probabilities, 
and is structured so that it can be used by persons with a minimal 
mathematical background. 

Although theoretically the guide can be studied and used without 
running through the mathematical chapter as a preliminary—
because the formulas used in the applications are presented again for 
review before being applied and the presentation of solutions is 
algorithmic— we consider that a minimal knowledge of the classical 
definition of probability, probability field, operations with events 
and relations between events to be necessary. 

Also, the combinatorial calculus represents a main tool that is 
used consistently in the applications presented, and understanding 
and applying this calculus requires reading the chapter titled 
Combinatorics before proceeding with these applications. 

Besides this basic knowledge of probability theory and 
combinatorics, the only requirement for the reader is to have a good 
command of the four arithmetic operations between real numbers 
and of basic algebraic calculus. 
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These limitations in knowledge are possible because this guide 
deals only with finite or at the most discrete cases as the basis for 
these applications.  

Most of the applications presented here come from games of 
chance, where we deal only with finite probability fields. 

Theoretically, any probability calculus problem, no matter how 
complex, can be unfolded in successive elementary applications that 
use basic formulas, but most of the time finishing the calculus can 
be very laborious or even impossible, not to mention the high risk of 
the occurrence of errors during a long succession of calculations. 

The use of combinatorics and even of classical probability 
repartitions can often solve such problems simply and elegantly, 
whereas the step-by-step approach is much too laborious and is 
predisposed to calculation errors. 

 
If we composed a list of the minimal knowledge required by the 

reader who wants to solve finite probability applications by studying 
this guide, it would look as follows: 

 
Previous background (from school): 
– Operations with real numbers: addition, subtraction, 

multiplication, division, powers, order of operations, operations with 
fractions, reductions; 

– Algebraic calculus: expanding the brackets, multiplication of 
expressions within brackets, raising an expression to a power, 
formulas of shortened calculus, factoring out, reduction of algebraic 
fractions; 

 
Combinatorics knowledge (from school or the chapter titled 

Combinatorics): 
– Definition of permutations, arrangements and combinations; 
– General formulas of permutations, arrangements and 

combinations; 
– Combinatorial calculus procedures: properties (formulas), 

partitioning; 
– Models of solved applications; 
– Solving as many as applications as possible. 
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Basic probability knowledge (from school or the chapter titled 
Probability Theory Basics): 

– Operations with sets: intersection, union, difference, 
complementary; 

– Events, operations with events as sets; 
– Elementary events, incompatible events, independent events, 

mutually exclusive events; 
– Classical definition of probability; 
– Probability field. 
 
Of course, the list can be extended depending on each reader’s 

option; thus, we recommend that the wider the image of theoretical 
notions and results are, the surer and much better guarded against 
theoretical or calculation errors their application will be. 

Inversely, the list can be reduced (but not by much) because the 
solution of many applications (especially those from the beginning) 
contain additional explanations about the notions involved in 
framing a problem and in the mathematical models used. 

Besides this list of required mathematical knowledge, an 
important component of the ensemble of necessary skills is the 
ability to observe. 

The correct framing of a problem, establishing the probability 
field to operate within and the relations between various events are a 
matter of solver’s ability to observe. 

This initial stage of the solving algorithm is essential in solving 
an application and finding the final numerical result. 

But the ability to observe is not a native skill and does not result 
from a previous mathematical education. It can be acquired at any 
time through unceasing exercise.   

This is also the reason for including in this guide a collection of 
solved applications with detailed explanations and instructions. 

The complexity and difficulty of the applications grows 
progressively and their solutions follow exactly the general 
algorithm for solving presented in the next section. 

The didactic goal of this guide is to enable the reader to solve any 
finite probability application alone or by consulting the guide. 

At the end of this introduction, to achieve the best didactic 
results, we recommend that the reader do the following things: 
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– Read the sections that explain the probability notion in the 
chapters titled What Is Probability? (the sections on Probability—
the word, Probability as a limit, The probability concept). 

– Read at least once all definitions in the list of requirements of 
mathematical knowledge outlined earlier. 

– Follow exactly the general algorithm for solving for any 
application and do not skip any stage, even if a particular application 
appears easy (do not pass directly to numerical calculus without 
framing the problem and establishing the probability field). 

– Do revise the long or complex combinatorial calculations; this 
is where errors often occur. 

– Do not try to apply a previous solving scheme to a similar 
application at any cost; the probability fields may be different, as 
can the events to be measured or the questions to be answered, even 
if their descriptions are similar or even identical. 

– Try to memorize over time the formulas used to solve the 
applications. 

– Revise the calculations and the entire solution algorithm each 
time the final numerical result seems too low or too high, but do not 
turn this into a general criterion for establishing the existence of an 
error (intuition can play bad tricks in probability). 

– Do not approach the unsolved applications (except those 
recommended at the end of various sections) until you have run 
through the entire calculus guide and its solved applications. 

– Do not stop your study if from the beginning you feel that 
solving the applications is beyond your comprehension; just take a 
break and resume reading later, when your concentration is higher. 
Read a paragraph several times if needed and come back to the 
information from previous chapters any time you consider it 
necessary. 
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The general algorithm of solving  
 
 
Every solution of a probability application submits to a basic 

algorithm, which basically ensures the correctness of framing and 
approach to the calculus problem and of the application of the 
theoretical results as well. 

Even though the methods of solving a problem can be multiple, 
all procedures are applied on the basis of this general algorithm, 
which is valid for any finite or discrete probability application. 

The solution algorithm consists of three main stages: 
 
1)  Framing the problem 
– Establishing the probability field attached to an experiment; 
– Textually defining the events to be measured; 
– Establishing the elementary events that are equally possible; 
– Observing the independent, nonindependent and incompatible 

events; 
– Necessary idealizations. 
 
2)  Establishing the theoretical procedure 
– Choosing the solving method (step by step or condensed); 
– Selecting the formulas to use. 
 
3)  The calculus 
– Numerical calculus; 
– Combinatorial calculus; 
– Eventual approximations; 
– Probability calculus (applying the formulas). 
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Framing the problem 
 
This first stage of the solution algorithm is very important. 
Although it does not include the probability calculus that is 

required by each application, it establishes the framework for this 
calculus by showing the optimal mathematical model that makes the 
correct application of theoretical results possible and ensures that 
relevant numerical results are acquired in the end. 

We saw that the probability of an event makes sense from a 
mathematical point of view only if that event belongs to a Boolean 
structure, namely, a field of events. 

If we consider the set Ω of all possible outcomes or the sample 
space of an experiment, then the set of events associated with that 
experiment is included in or equal to P (Ω ) and is a Boole algebra. 

If we specified the set Ω  and this set is finite or discrete, we have 
also specified the associated field of events.  

 
Examples: 
 
1)  In the experiment involving tossing a coin, the sample space is 
{ },H TΩ =  (H – heads, T – tails), and the field of events is  

P (Ω ) = { } { }{ }, , ,H Tφ Ω . 
 
2)  In the experiment involving tossing two coins, the sample 

space may be { }( , ), ( , ), ( , ), ( , )H T T H H H T TΩ =  if we take into 
account the outcomes for each coin (we deal in this case with a set 
of ordered pairs), or may be { }' ( ), ( ), ( )HT HH TTΩ = , if we take 
into account the cumulative outcomes for both coins (it is a set of 
unordered pairs, namely combinations, in which order does not 
count). 

 
Although the set 'Ω  stands for a set of outcomes that covers all 

possibilities, choosing the field of events P ( 'Ω ) as basis for framing 
the application is not correct. As we will see further, the elementary 
events of this field cannot be considered equally possible. 
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In applications, specifying the sample space by enumerating its 
elements is not absolutely necessary because we are most interested 
in the number of these elements rather than in being able to see 
them. 

 
3)  Three persons are randomly chosen from a group of 100 with 

certain specified characteristics. The probability for at least one 
chosen person to have certain characteristics is required.  

In such a problem, denoting all possible outcomes of the 
experiment and unfolding their set is useless. This set has only to be 
established and imagined.  

The number of its elements is given by all 3-size combinations 
from 100 elements, namely, 3

100 161700C = . 
 
Often, the field of events is not that easy to view, as can be seen 

in the next example. In these cases, the field of events must be 
rebuilt so that the event whose probability we are looking can 
belong to it. 

 
……………….. missing part ………………………… 

 
Exercises and problems 
 
1)  At a European roulette (with thirty-seven numbers from 0 to 

36), find the probability of occurrence of an uneven number after a 
spin. 

 
Answer: 
The sample space is {0, 1, 2, ..., 36}. 
The events ie ={occurrence of number i}, i = 0, ..., 36, are the 

elementary events of the experiment of spinning the roulette wheel. 
They are equally possible (this is a necessary idealization). Each 

event has the probability 1/37. 
The event to be measured is A – occurrence of an uneven 

number. 
This is a compound event, which can be decomposed as  

1 3 35...A e e e= ∪ ∪ ∪  (in eighteen elementary events). 



 
80

The elementary events are mutually exclusive; therefore, we have 
1 3 35( ) ( ) ( ) ... ( ) 18 1/ 37 18 / 37 0.48648.P A P e P e P e= + + + = ⋅ = =  

In other words, from the total of thirty-seven equally possible 
outcomes, eighteen are favorable for the event A to occur, implying 
an 18/37 probability according to the classical definition of 
probability. 

 
2)  Two dice are rolled simultaneously. Calculate the probability 

for the sum of the points shown on both dice to be greater than 7. 
 
Answer: 
An elementary event is represented by a 2-size combination of 

numbers of the two dice. The set of elementary events is then 
( ) { } { }{ }, 1, 2, 3, 4, 5, 6 , 1, 2, 3, 4, 5, 6a b a b∈ ∈ , which is a set of 

combinations with 6 x 6 = 36 elements.  
a stands for the number shown on the first die and b for the 

number shown on the second.  
Any such combination (a, b) is possible in the same measure. 
The event to be measured is  A:  a + b > 7. 
All the variants that are favorable for this inequality are:  
2 + 6, 3 + 5, 3 + 6, 4 + 4, 4 + 5, 4 + 6, 5 + 3, 5 + 4, 5 + 6, 6 + 2,  

6 + 3, 6 + 4, 6 + 5, 6 + 6, for a total of 14.  
 Observe that the order has been taken into account (both 
combinations a + b and b + a have been counted as different). 

Each favorable combination is an elementary event and their 
union is event A. 

We then have P(A) = 14 x 1/36 = 14/36 = 7/18 = 0.38888. 
An incorrect framing of this problem is one in which we would 

consider the set of elementary events as the set of possible sums of 
the points shown on dice: {sum 2, sum 3, sum 4, sum 5, sum 6,  
sum 7, sum 8, sum 9, sum 10, sum 11, sum 12}, with eleven 
elements. 

Event A is the union of five elementary events (sum 8, sum 9, 
sum 10, sum 11 and sum 12). 

Although it seems to be an easy choice and does not take into 
account the order (but the cumulative results of the two dice), it is 
not correct because the respective events cannot be considered 
equally possible.  
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For example, the event sum 2 can occur in only one way (1 + 1, 
namely number 1 on both dice), while the event sum 5 can occur in 
four ways (2 + 3, 3 + 2, 1 + 4, 4 + 1).  

This makes impossible an equally possible type of idealization 
for these events. 

In such a field of events, calculating the probability of event A as 
5/11 is incorrect because the classical definition of probability is 
valid only for equally possible events. Keep this error example in 
mind. 

 
……………….. missing part ………………………… 

 
 
Establishing the theoretical procedure  
 
To establish the theoretical procedure through which an 

application is solved means choosing a solving method and selecting 
the mathematical formulas to be used in the probability calculus 
itself. 

This selection is always made after the problem is properly 
framed. No formula can be applied without having first defined the 
ensemble of conditions (hypotheses) that match the mathematical 
model that generated the respective formula. 

This is why respecting the chronological order of the two stages 
(framing the problem and establishing the theoretical procedure) is 
not just a recommendation, but a logical necessity. 

 
Methods of solving 

 
A probability calculus problem may have several solving 

methods (ways) that lead to the same correct result. This happens 
because probability theory is a consistent and rigorous theory from a 
mathematical point of view. 

The numerous possible solving methods that use the basic 
theoretical results can be grouped into two main categories: the step-
by-step methods and the condensed methods. 

The solutions of finite type applications all use these solving 
methods, either individually or combined. 
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Obviously, depending on the application, other specific methods 
might appear that use more complex theoretical results, and these 
cannot be framed in the two main categories.  

A solution might also use both methods in the various partial 
solutions that may be involved in a respective application. 

The step-by-step method consists of the successive decomposition 
of the experimental ensemble into simpler individual tests, applying 
theoretical results to each part of the test and combining the partial 
results to obtain the probabilities of the events to be measured. 

The condensed method consists of treating the experimental 
ensemble as a whole unit (one single test), in which the events to be 
measured are decomposed according to the field of events attached 
to the respective experiment and the theoretical results are applied 
directly to the events to be measured. 

Condensed methods are specific to the usage of combinatorics or 
classical probability schemes. 

To see how the two methods work, let us consider a few very 
simple applications. 

 
Exercises and problems 
 
1)  Two dice are rolled. Find the probability for the first die to 

show 3 and the second to show 5. 
 
A.  Step-by-step method 
We consider the rolling of the two dice as two separate 

experiments (tests): rolling the first die and rolling the second.  
We assume these tests are independent. 
Denote by A – the first die shows 3 and by B – the second die 

shows 5.  
The two experiments are the same type (rolling the die) and have 

the same sample space, so we can assume that the two attached 
fields of events are identical.  

Thus, event A B∩ – the first die shows 3 and the second die 
shows 5 make sense with respect to the intersection operation. 

We have P(A) = 1/6, P(B) = 1/6 (we have applied the classical 
definition of probability for each part of the test) and, because A and 
B are independent events, we have 
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( ) 1 1( ) ( ) 1/ 36
6 6

P A B P A P B∩ = ⋅ = ⋅ =  (this is the selected and 

applied formula). 
 
B.  Condensed method 
We consider the rolling of the two dice as one single experiment. 
The sample space attached to this experiment is the set of ordered 

pairs (a, b), with { }, 1, 2, 3, 4, 5, 6a b∈ . 
Their number is  6 x 6 = 36  and their occurrences are equally 

possible elementary events. Among them, a single pair is favorable 
for event E – the first die shows 3 and the second die shows 5 to 
occur, namely the pair (3, 5). 

We then have, according to the classical definition of probability, 
that P(E) = 1/36. 

Observe that in the solution using the condensed method there 
was no longer a need for the additional formula of the probability of 
the intersection of two independent events, the classical definition of 
probability being sufficient.  

 
2)  A player participating in a card game with a 52-card deck is 

dealt two cards, with no cards in view at that moment. What is the 
probability of the player being dealt A♣ and 7♥? What is the 
probability of the player being dealt an A and a 7? 

 
A.  Step-by-step method 
We consider the distribution of the two cards as two different 

experiments (the distribution of the first card and then the 
distribution of the second card, both performed by a dealer). 

Denote the following events: 
A – player is dealt an A♣ as the first card 
B – player is dealt a 7♥ after the A♣ is dealt 
C – player is dealt a 7♥ as first card 
D – player is dealt an A♣ after the 7♥ is dealt 
Events A and C belong to the field of events that is attached to 

first experiment, while B and D belong to the field of events 
attached to the second experiment. 

Although this problem deals with two different probability fields, 
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by identifying the events with the set of outcomes through which 
they occur, we see that these events are all part of the sample space 
of the first experiment; therefore, the intersection and union 
operations between them make sense. 

We know that events A and B are independent, as are C and D, 
while A and C are incompatible.  

Thus, events A B∩  and C D∩  are also incompatible. 
P(A) = 1/52, P(B) = 1/51, P(C) = 1/52, P(D) = 1/51 (from the 

classical definition of probability). 
The event to be measured is player is dealt A♣ and 7♥ – 

( ) ( )A B C D∩ ∪ ∩  and we have: 
( )( ) ( ) ( ) ( )P A B C D P A B P C D∩ ∪ ∩ = ∩ + ∩ =  

1 1 1 1( ) ( ) ( ) ( ) 1/1326
52 51 52 51

P A P B P C P D+ = ⋅ + ⋅ = . 

We have applied the formula of probability of intersection of two 
independent events and the formula of probability of union of two 
incompatible events. 

 
B.  Condensed method 
We consider one experiment, namely, the distribution of two 

cards performed by dealer.  
The set of elementary events attached to this experiment can be 

identified with the set of 2-size combinations from the 52, which has 
2
52 1326C =  elements. 
Among them, a single combination is favorable for the 

occurrence of event to be measured player is dealt A♣ and 7♥, so its 

probability is 2
52

1 1/1326
C

= . 

 
For the second question (the probability of a player being dealt 

any A and any 7): 
 
A.  Step-by-step method 
We consider the distribution of the two cards as two different 

experiments (the distribution of the first card and then the 
distribution of the second card, both performed by a dealer). 

Denote the following events: 
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……………….. missing part ………………………… 
 
2)  You buy a ticket (one variant) for the 6/49 lottery. What is the 

probability of exactly three numbers printed on your ticket being 
drawn? 

 
Answer: 
 
Solution 1  
Let (abcdef) be the played variant (a, b, c, d, e, f are distinct 

natural numbers from 1 to 49). 
Let us denote the events: 

abcA – exactly three numbers from your ticket are drawn: the first, 
the second and the third, namely, a, b, c; 

abdA – exactly three numbers from your ticket are drawn: the first, 
the second and the fourth, namely, a, b, d; and so on; 

defA – exactly three numbers from your ticket are drawn: the 
fourth, the fifth and the sixth, namely, d, e, f; 

We have 3
6

4 5 6 20
2 3

C ⋅ ⋅
= =

⋅
 such events ijkA and the event to be 

measured is their union:
{ }, , , , , , ,

ijk
i j k a b c d e f
i j k

A
∈

< <

∪ . 

The total number of possible combinations that can be drawn is 
6
49C .  
The probability of an event ijkA can be calculated very simply: the 

combinations that are favorable to event ijkA are of the form (ijkxyz), 
with x, y, z distinct and different from a, b, c, d, e. 

(ijkxyz) = (ijk)(xyz) 
Their number is  3 3

49 6 431 C C−⋅ =  (one combination (ijk) and x, y, z 
may take 49 – 6 = 43 values). 

According to (F3), we then have: ( )
3
43
6
49

ijk
CP A
C

= , for any i, j, k. 
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Observe that events ijkA are mutually exclusive; therefore, we are 

allowed to apply (F6):   
{ }

( )
3
43

6
, , , , , , , 49

2020ijk ijk
i j k a b c d e f
i j k

CP A P A
C∈

< <

 
  = ⋅ = 
 
 

∪ . 

 
Exercise:  Do the complete calculation and express the 

probability as a percentage. 
 
Solution 2 
This experiment corresponds to the scheme of the nonreturned 

ball, with the following equivalencies: 
– draw of a ball = draw of a number; the experiment is repeated 

for n = 6 times, without putting back the ball; 
– we have two colors (s = 2): the numbers (balls) from the ticket 

(a, b, c, d, e, f) represent the first color, 1c  , and the remaining  
49 – 6 = 43 balls have the second color, 2c ; 

– we have 1 6a =  balls of color 1c  and 2 43a =  balls of color 2c ; 
The problem asks for the probability of 1 3α =  balls of color 1c  

and 2 3α =  balls of color 2c  being drawn. 
By applying (F30), we find the searched probability to be 

( )
3 3
6 43

6
49

6; 3, 3 C CP
C

= . 

 
……………….. missing part ………………………… 
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PROBABILITY CALCULUS 
APPLICATIONS 

 
 

 Because skills in probability calculus and in correctly applying 
the theoretical results are acquired only through exercise, this 
chapter contains a collection of solved and unsolved applications 
that cover most of the range of classical probability problems.  

The reader who has studied the Beginner’s Calculus Guide can 
practice the theoretically acquired skills by studying the solutions to 
the classical problems and solving as many applications as possible. 

The proposed problems involve probability calculus applications 
for finite cases. Their difficulty grows progressively from simple to 
the intermediate level.  

We also recommend that readers who want to improve their 
application and probability calculus skills not limit themselves to the 
sections of applications in this book, but work on other specific 
problem books, too. 
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 Solved applications 
 
 
1)  Determine P (Ω ) if: 
a)  { }1, 2Ω = ; 

b)  { }AΩ = ; 

c)  { } { } { }{ }0,1 , 2, 3 , 4Ω = . 
 
Solution: 
a)  P (Ω ) = { } { } { }{ }, 1 , 2 , 1, 2φ ; 

b)  P (Ω ) = { }{ }, Aφ ; 
c)  P (Ω ) = 
{ }{ } { }{ } { }{ } { } { }{ } { } { }{ } { } { }{ }{ }, 0, 1 , 2, 3 , 4 , 0, 1 , 2, 3 , 0, 1 , 4 , 2, 3 , 4 ,φ Ω

 
2)  Write the sample space for the following experiments: 
a)  draw of a ball from an urn containing seven balls; 
b)  draw of two balls from two urns (one ball from each), the first 

containing three green balls and the second two red balls; 
c)  draw of a card from a 24-card deck (from the 9 card upward); 
d)  rolling two dice; 
e)  choosing three numbers from the numbers 1, 2, 3, 4, 5; 
f)  choosing seven letters from the letters a, b, c, d, e, f, g, h; 
 
Solution: 
a)  By numbering the balls, we have:  
Ω = {ball 1, ball 2, ball 3, ball 4, ball 5, ball 6, ball 7} or, 

equivalent, { }1, 2, 3, 4, 5, 6, 7Ω = . 
b)  By numbering the balls from the two urns and denoting by g a 

green ball and by r a red ball, the sample space is the following set 
of ordered pairs: 

{ }(1 ,1 ), (1 , 2 ), (2 ,1 ), (2 , 2 ), (3 ,1 ), (3 , 2 )g r g r g r g r g r g rΩ = . 
c)  Ω = {9♠, 9♣, 9♥, 9♦, 10♠, 10♣, 10♥, 10♦, J♠, J♣, J♥, J♦, Q♠, 

Q♣, Q♥, Q♦, K♠, K♣, K♥, K, A♠, A♣, A♥, A♦}. 
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d)  The sample space is the following set of ordered pairs: 
Ω = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3),  
(2, 4), (2, 5), (2, 6), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, 1), 
(4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), 
(5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}. 

e)  The sample space is the set of all 3-size combinations of 
numbers from the 5 given: 
Ω  = {(1, 2, 3), (1, 2, 4), (1, 2, 5), (1, 3, 4), (1, 3, 5), (1, 4, 5),  
(2, 3, 4), (2, 3, 5), (2, 4, 5), (3, 4, 5)}. 

f)  The sample space is the set of all 7-size combinations of 
letters from the 8 given: 
Ω  = {(a, b, c, d, e, f, g), (a, b, c, d, e, f, h), (a, b, c, d, e, g, h),  
(a, b, c, d, f, g, h), (a, b, c, e, f, g, h), (a, b, d, e, f, g, h),  
(a, c, d, e, f, g, h), (b, c, d, e, f, g, h)}. 

 
3)  Find the number of all possible outcomes for the following 

experiments: 
a)  rolling three dice; generalization: rolling n dice; 
b)  spinning a slot machine with four reels having eight symbols 

each; generalization: spinning a slot machine with n reels of m 
symbols each; 

c)  dealing a player three cards from a 52-card deck; 
d)  dealing two players two cards each from 50 cards; 
e)  a race with nine competitors. 
 
Solution: 
a)  Rolling a die has six possible outcomes, so rolling the three 

dice has  6 x 6 x 6 = 216 possible outcomes. 
b)  Spinning a reel has eight possible outcomes, so spinning the 

four reels has 8 x 8 x 8 x 8 = 4096 possible outcomes. 
Generalization: we have  ... n

n

m m m m× × × =���	��
  possible outcomes. 

c)  The result is given by the number of 3-size combinations from 

52, namely, 3
52

50 51 52 22100
2 3

C ⋅ ⋅
= =

⋅
. 
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d)  The two players are dealt a double card combination (xy)(zt) 
from the 50 cards. The result is given by the number of these 

combinations, which is  2 2
50 48

49 50 47 48 1381800
2 2

C C ⋅ ⋅
= ⋅ = . 

e)  The result is given by the number of permutations of nine 
elements, namely,  9! 2 3 4 5 6 7 8 9 362880= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ = .  

 
4)  Write the field of events attached to the following 

experiments: 
a)  tossing a coin; 
b)  drawing a ball from an urn with three balls; 
c)  drawing two balls from an urn with three balls. 
 
Solution: 
a)  The sample space is { },H TΩ =  (H – heads, T – tails), so the 

field of events is  Σ = P (Ω ) = { } { } { }{ }, , , ,H T H Tφ . 

b)  Denoting the three balls by a, b, c, we have { }, ,a b cΩ =  and  

Σ = P (Ω ) = { } { } { } { } { } { } { }{ }, , , , , , , , , , , ,a b c a b a c b c a b cφ . 
c)  With the same denotations as from point b), we have: 
{ }( , ), ( , ), ( ,a b a c b c′Ω =  and ′Σ = P ( ′Ω ) = 

{ } { } { } { } { } { }{ }, ( , ) , ( , , ( , ) , ( , ), ( , ) , ( , ), ( , ) , ( , ), ( , ) ,a b a c b c a b a c a b b c a c b c ′φ Ω  
 
5)  An urn contains thirty balls numbered 1 to 30. Relating to the 

experiment of drawing a ball, what can you state about the following 
events (elementary, compound, relations between them): 

A – the number of the drawn ball is even; 
B – the number of the drawn ball is a multiple of 4; 
C – the number of the drawn ball is 5; 
D – the number of the drawn ball is a multiple of 5; 
E – the number of the drawn ball is a power of 5. 
 
Solution: 
The only elementary event is C; the other events are compound. 
The following couples of events are incompatible: A and C, B and 

C. We have the following inclusions: B A⊂ , E D⊂ , C D⊂ , 
C E⊂ . 
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6)  Two cards are drawn from a 52-card deck. Consider the 
events:  

A – two aces are drawn; 
B – two cards higher than Q are drawn; 
C – 5♦ and a J are drawn. 
Decompose these events in elementary events and specify their 

numbers. 
 
Solution: 
The elementary events attached to this experiment are the 

occurrences of the 2-size combinations (couples) from the 52 cards.  
A = {(AA)} = {(A♠A♣), (A♠A♣), (A♠A♦), (A♣A♥), (A♣A♦), 

(A♥A♥)}.   
The set A has 2

4 6C =  elements (elementary events). 
B = {(xy), with x, y being K or A} = {(A♠A♣), (A♠A♣), (A♠A♦), 

(A♣A♥), (A♣A♦), (A♥A♥), (K♠K♣), (K♠K♣), (K♠K♦), (K♣K♥), 
(K♣K♦), (K♥K♥), (K♠A♠), (K♠A♣), (K♠A♥), (K♠A♦), (K♣A♠), 
(K♣A♣), (K♣A♥), (K♣A♦), (K♥A♠), (K♥A♣), (K♥A♥), (K♥A♦), 
(K♦A♠), (K♦A♣), (K♦A♥), (K♦A♦)}. 

The set B is the union of the mutually exclusive sets {(KK)}, 
{(AA)} and {(AK)} and has 2 2

4 4 4 4 28C C+ + ⋅ =  elements. 
C = {(5♦ J)} = {(5♦ J♠), (5♦ J♣), (5♦ J♥), (5♦ J♦)}.  
C has four elements. 
 

……………….. missing part ………………………… 
 
24)  At a blackjack game, calculate the probability for a player to 

get a total of twenty points from the first two cards (provided no 
other cards are shown), in two cases: a) a 52-card deck is used; 
b) two 52-card decks are used. 

 
Solution: 
a) for one deck 
The variants totaling twenty points are of the type A + 9 or  

10 + 10 (as a value; that is, any 2-size combination of cards from 10, 
J, Q, K). We have sixteen variants A + 9 (4 aces and 4 nines) and 

2
16 120C =  variants 10 + 10 (all 2-size combinations of cards from 

the sixteen cards with a value of 10). The number of all possible 
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distribution variants for two cards is 2
52 1326C = . The probability is 

then  16 120 68 / 663
1326

P +
= = . 

b) for two decks 
The variants of type A + 9 number sixty-four and those of type 10 

+ 10 (as value) number 2
32 496C = . The number of all possible 

distribution variants is 2
104 5356C = . The probability is then   

P = 64 496
5356
+ = 140/1339. 

 
25)  You are participating in a Texas Hold’em Poker game with 

seven opponents and you are dealt (K3). Calculate the probability of 
your opponents holding no K (before the flop). 

 
Solution: 
We calculate the probability of the contrary event  

A – at least one opponent holds at least one K. 
We first calculate the probability of a fixed opponent holding at 

least one K. The combinations that are favorable for this event are 
(Kx), with x different from the cards in your hand. To count them, 
we split them into two groups: 

(Kx), x different from K – and number 3 x (52 – 2 – 1 – 2) =  
3 x 47 = 141 , and 

(KK) – and number 2
3 3C = . 

In total, we have 141 + 3 = 144 favorable combinations, from 
2
50 1225C =  possible, so the probability is 144/1225. 
Denoting by iA  the events opponent number i holds at least one 

K  (i = 1, ..., 7),  we have ( ) 144 /1225iP A =  and can then study the 
intersections of  2, 3, 4,5, 6 and 7 sets iA : 

There are three K-cards still in play, so more than three 
opponents cannot hold at least one K. Thus, the intersections of 
more than three sets iA  are empty. We have 2

7 21C =  intersections 
for two sets iA . Such intersection contains double combinations of 
the type (Kx)(Ky), with x and y different from the cards in your 
hand. We split them into three groups: 
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(Kx)(Ky), with x and y different from K – and number  
3 x (52 – 2 – 1 – 2) x 2 x (52 – 2 – 2 – 1 – 1) = 12972; 

(KK)(Ky), with y different from K – and number 
2
3 1 (52 2 2) 144C × × − − =  , and 
(Kx)(KK), with x different from K – and number 

2
23 (52 2 1 1) 144C× − − − × = . 

In total, we have 12972 + 144 + 144 = 13260 combinations that 

are favorable from 2 2
50 48C C  possible, so ( ) 2 2

50 48

13260
i jP A A

C C
∩ = ,  

for any , 1, ..., 21,i j i j= ≠ . 
We have 3

7 35C =  intersections of three sets iA . 
Such intersection contains triple combinations of the type 

(Kx)(Ky)(Kz), with x, y and z different from K, and number  
3 x (52 – 2 – 1 – 2) x 2 x (52 – 2 – 2 – 1 – 1) x 1 x  
x (52 – 2 – 2 – 2 – 1) = 583740. 

The number of all possible triple combinations is 2 2 2
50 48 46C C C , so 

we have  ( ) 2 2 2
50 48 46

583740
i j kP A A A

C C C
∩ ∩ = , for any  

, , , 1, ..., 35i j k i j k< < = . 
We can now apply the inclusion-exclusion principle: 

2 2 2 2 2
50 48 50 48 46

144 13260 583740( ) 7 21 35 0.63562
1225

P A
C C C C C

= ⋅ − ⋅ + ⋅ = . 

The probability of the contrary event (requested by the problem) 
is  1 – P(A) = 0.36438. 

 
……………….. missing part ………………………… 

 
29)  You are participating in a Texas Hold’em Poker game with n 

opponents, you are dealt two suited cards (cards with the same 
symbol) and the flop comes with three additional cards of your suit. 

Find the general formula of probability of none of your 
opponents holding two cards of your suit.  

Solution: 
We have 52 – 2 – 3 = 47 unseen cards. 
There are still 13 – 2 – 3 = 8 cards of your suit among the unseen 

cards. 
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Let us denote by S the symbol of your suit. 
We find first the probability of a specific opponent holding (SS) 

(denote this event by A): 
The total number of possible 2-size combinations that an 

opponent can be dealt is 2
47 1081C = . 

The number of favorable combinations (SS) is 2
8 28C = . 

The probability is then 2 2
8 47( ) / 28 /1081P A C C= = . 

Denote by iA  the events opponent number i holds (SS),  

i = 1, ..., n.  The event to be measured is 
1

n

i
i

A
=
∪ . 

We have 2 ( 1) / 2nC n n= −  intersections of two events iA . 
Such an intersection contains the double combinations (SS)(SS), 

and number 2 2
8 6C C . The number of all double combinations two 

opponents can be dealt is 2 2
47 45C C . 

Thus, ( )
2 2
8 6
2 2
47 45

i j
C CP A A
C C

∩ = , for any i j≠ ,  i, j = 1, ..., n. 

We have 3 ( 1)( 2) / 6nC n n n= − −  intersections for each of three 
events iA . Such an intersection contains the triple combinations 
(SS)(SS)(SS), and numbers 2 2 2

8 6 4C C C . 
The number of all triple combinations three opponents can be 

dealt is 2 2 2
47 45 43C C C .  

Thus, ( )
2 2 2
8 6 4

2 2 2
47 45 43

i j k
C C CP A A A

C C C
∩ ∩ = , for any i j k< < ,   

i, j, k = 1, ..., n. 
We have 4 ( 1)( 2)( 3) / 24nC n n n n= − − −  intersections of four 

events iA . Such an intersection contains the quadruple combinations 
(SS)(SS)(SS)(SS), and numbers 2 2 2 2

8 6 4 2C C C C = 2 2 2
8 6 4C C C . 

The number of all quadruple combinations four opponents can be 
dealt is 2 2 2 2

47 45 43 41C C C C . 
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Thus, ( )
2 2 2
8 6 4

2 2 2 2
47 45 43 41

i j k h
C C CP A A A A

C C C C
∩ ∩ ∩ = , for any 

i j k h< < < ,   i, j, k, h = 1, ..., n. 
A maximum of four opponents can simultaneously hold (SS), 

because there are only 8 S-cards in play; therefore, the intersections 
of more than four events iA  are empty. 

We can now apply the inclusion-exclusion principle: 
2 2 2 2 3 2 2 2 4 2 2 2
8 8 6 8 6 4 8 6 4

2 2 2 2 2 2 2 2 2 2
1 47 47 45 47 45 43 47 45 43 41

n
n n n

i
i

nC C C C C C C C C C C CP A
C C C C C C C C C C=

 
= − + − 

 
∪  and this 

is the searched formula. 
 
Exercise: Do the complete combinatorial calculus and do the 

algebraic calculus to put the above expression in a polynomial form. 
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Unsolved applications 
 
 
1)  Determine P (Ω ) if: 
a)  { }0,1, 2Ω = ; 

b)  { },A BΩ = ; 

c)  { } { } { } { }{ }, , , , , , ,a b c d a b c eΩ = . 
 
2)  Write the sample space of the following experiments: 
a)  draw of a ball from an urn containing eight balls; 
b)  draw of two balls from two urns (one ball from each), the first 

containing four yellow balls and the second three black balls; 
c)  draw of a card from a 32-card deck (from 7 upward); 
d)  rolling three dice; 
e)  choosing four numbers from among the numbers 5, 7, 9, 11, 

13, 15; 
f)  choosing eight letters from among the letters m, n, o, p, q, r, s, 

t, u, v; 
 
3)  Find the number of all possible outcomes for the following 

experiments: 
a)  tossing five coins; generalization: tossing n coins; 
b)  spinning a slot machine with five reels and ten symbols; 
c)  dealing a player four cards from a 52-card deck; 
d)  dealing two players two cards each from 52 cards; 
e)  dealing three players three cards each from 52 cards; 
f)  a race with ten competitors. 
 
4)  Write the field of events attached to the following 

experiments: 
a)  choosing a card from a 24-card deck; 
b)  drawing a ball from an urn with five balls; 
c)  drawing five balls from an urn with seven balls. 
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5)  An urn contains fifty balls numbered 1 to 50.  
Relating to the experiment of drawing a ball, what can you state 

about the following events (elementary, compound, relations 
between them): 

A – the number of the drawn ball is even; 
B – the number of the drawn ball is a multiple of 4; 
C – the number of the drawn ball is 5; 
D – the number of the drawn ball is a multiple of 5; 
E – the number of the drawn ball is a power of 5; 
F – the number of the drawn ball is a multiple of 10; 
G – the number of the drawn ball is a multiple of 3; 
H – the number of the drawn ball is a power of 3; 
I – the number of the drawn ball is even. 
 
6)  Two cards are drawn from a 52-card deck. Consider the 

events:  
A – two clubs are drawn; 
B – two cards having a value less than 5 are drawn; 
C – a 7 and a Q are drawn. 
Decompose these events in elementary events and specify their 

numbers. 
 
7)  Find the probability of getting a multiple of 3 at a die roll. 
Find the probability of getting a total of 5 points when rolling two 

dice. Find the probability of getting a total of 10 points when rolling 
three dice. 

 
8)  An urn contains nine white balls and four black balls. Find the 

probability of the following events: 
a)  A – drawing a white ball; 
b)  B – drawing a black ball. 
 
9)  In a pencil box are five pairs of pencils of same length (five 

separate lengths). Two pencils are randomly drawn from the box. 
What is the probability of drawing a pair of pencils of the same 

length? 
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10)  In a student’s briefcase are seven math books, two English 
books and two drawing books. What is the probability that a 
randomly chosen book is a math book? 

 
……………….. missing part ………………………… 

 
69)  A student must sit for an examination consisting of four 

questions selected randomly from a list of 150 questions.  
To pass, the student must answer all four questions.  
What is the probability that the student passes the examination if 

he or she knows the answers to 100 questions on the list?  
Generalize this. 
 
70)  n shooters simultaneously fire at a mobile target.  
The probability of hitting the target is the same for all shooters 

and is equal to 1/k, where k is a non-negative natural number. 
Calculate the probability that the target is hit by at least one 

shooter. 
 
71)  From an urn that contains n white and m black balls, k balls 

are drawn at random. What is the probability that there are r ( r n≤ ) 
white balls among them? 

 
72)  We have four urns; the first contains five white and four 

black balls, the second contains three white and six black balls, the 
third contains two white and five black balls and the fourth contains 
two white and three black balls.  

A ball is drawn from a randomly chosen urn. Find the probability 
of the drawn ball being black. 

 
……………….. missing part ………………………… 

 
102)  (De Mere’s paradox) Prove that to obtain at least one 1 at a 

throw of four dice is more probable than to obtain, at least once, two 
1’s at twenty-four throws of two dice. 

 
103)  n points divide a circle into equal circular arcs.  
Two points are randomly chosen from them. What is the mean of 

the distance between the chosen points?  
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……………….. missing part ………………………… 
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Sponsored links 
 
 
 

SIAM – www.siam.org  
Through our publications, research, and 
community, the mission of SIAM is to 
build cooperation between mathematics 
and the worlds of science and 
technology. 

 
Maplesoft – www.maplesoft.com  
Maple 11’s world-leading computation 
engine offers the breadth and depth 
to handle every type of mathematics. 

   
The Institute for the Study of 
Gambling and Commercial Gaming - 
www.unr.edu  
The Institute serves as a structure to 
broaden the understanding of gambling 
and the commercial gaming industries. 

 

Gamblers Book Shop – 
www.gamblersbook.com  
The largest selection of gambling books, 
videotapes and software in the world. 
Gambling Book Reviews by Howard 
Schwartz. 

 


